Skip to main content
Log in

Effects of Simvastatin on Proinflammatory Cytokines and Matrix Metalloproteinases in Hypercholesterolemic Individuals

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Statins are potent lipid-lowering drugs but anti-inflammatory effects have also been suggested. Our aim was to investigate the effects of simvastatin on proinflammatory cytokines and matrix metalloproteinases (MMPs). Eighty hypercholesterolemic men were randomized to simvastatin 40 mg or placebo for 6 weeks. Simvastatin treatment significantly reduced C-reactive protein (CRP) levels while interleukin (IL)-6 levels remained unchanged. The ex vivo release of IL-1β and IL-6 was not altered by simvastatin, whereas the release of TNF-α and IL-8 increased after 6 weeks of simvastatin treatment. Similarly, the circulating levels of MMP-3 and TIMP-1 remained unaffected by simvastatin while MMP-9 increased. However, none of the effects except for the CRP reduction within the simvastatin group reached statistical significance when compared to the placebo group. Our findings are in contrast to previous in vitro and animal data and question the in vivo relevance of some of the pleiotropic effects of simvastatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shah, P.K. 2003. Mechanisms of plaque vulnerability and rupture. Journal of the American College of Cardiology 41: 5S–22S.

    Article  Google Scholar 

  2. Hansson, G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. New England Journal Medicine 352: 1685–1695.

    Article  CAS  Google Scholar 

  3. Frostegård, J., A.K. Ulfgren, P. Nyberg, U. Hedin, J. Swedenborg, U. Andersson, and G.K. Hansson. 1999. Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 145: 33–43.

    Article  PubMed  Google Scholar 

  4. Koenig, W., and N. Khuseyinova. 2007. Biomarkers of atherosclerotic plaque instability and rupture. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 15–26.

    Article  PubMed  CAS  Google Scholar 

  5. Galis, Z.S., G.K. Sukhova, M. Lark, and P. Libby. 1994. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. Journal of Clinical Investigation 94: 2493–2503.

    Article  PubMed  CAS  Google Scholar 

  6. Galis, Z.S., G.K. Sukhova, R. Kranzhofer, S. Clark, and P. Libby. 1995. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proceedings of the National Academy of Sciences of the United States of America 92: 402–406.

    Article  PubMed  CAS  Google Scholar 

  7. Kai, H., H. Ikeda, H. Yasukawa, M. Kai, Y. Seki, F. Kuwahara, T. Ueno, K. Sugi, and T. Imaizumi. 1998. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. Journal of the American College of Cardiology 32: 368–372.

    Article  PubMed  CAS  Google Scholar 

  8. Tayebjee, M.H., G.Y. Lip, K.T. Tan, J.V. Patel, E.A. Hughes, and R.J. MacFadyen. 2005. Plasma matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-2, and CD40 ligand levels in patients with stable coronary artery disease. The American Journal of Cardiology 96: 339–345.

    Article  PubMed  CAS  Google Scholar 

  9. Fukuda, D., K. Shimada, A. Tanaka, T. Kusuyama, H. Yamashita, S. Ehara, Y. Nakamura, T. Kawarabayashi, H. Iida, M. Yoshiyama, and J. Yoshikawa. 2006. Comparison of levels of serum matrix metalloproteinase-9 in patients with acute myocardial infarction versus unstable angina pectoris versus stable angina pectoris. The American Journal of Cardiology 97: 175–180.

    Article  PubMed  CAS  Google Scholar 

  10. Nilsson, L., L. Jonasson, J. Nijm, A. Hamsten, and P. Eriksson. 2006. Increased plasma concentration of matrix metalloproteinase-7 in patients with coronary artery disease. Clinical Chemistry 52: 1522–1527.

    Article  PubMed  CAS  Google Scholar 

  11. Blankenberg, S., H.J. Rupprecht, O. Poirier, C. Bickel, M. Smieja, G. Hafner, J. Meyer, F. Cambien, L. Tiret, and AtheroGene Investigators. 2003. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107: 1579–1585.

    Article  PubMed  CAS  Google Scholar 

  12. Lubos, E., R. Schnabel, H.J. Rupprecht, C. Bickel, C.M. Messow, S. Prigge, F. Cambien, L. Tiret, T. Münzel, and S. Blankenberg. 2006. Prognostic value of tissue inhibitor of metalloproteinase-1 for cardiovascular death among patients with cardiovascular disease: Results from the AtheroGene study. European Heart Journal 27: 150–156.

    Article  PubMed  CAS  Google Scholar 

  13. Garvin, P., L. Nilsson, J. Carstensen, L. Jonasson, and M. Kristenson. 2008. Circulating matrix metalloproteinase-9 is associated with cardiovascular risk factors in a middle-aged normal population. PLoS ONE 12(3): 1774.

    Article  Google Scholar 

  14. Wu, T.C., H.B. Leu, W.T. Lin, C.P. Lin, S.J. Lin, and J.W. Chen. 2005. Plasma matrix metalloproteinase-3 level is an independent prognostic factor in stable coronary artery disease. European Journal of Clinical Investigation 35: 537–545.

    Article  PubMed  CAS  Google Scholar 

  15. Galis, Z.S., M. Muszynski, G.K. Sukhova, E. Simon-Morrissey, E.N. Unemori, M.W. Lark, E. Amento, and P. Libby. 1994. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circulation Research 75: 181–189.

    PubMed  CAS  Google Scholar 

  16. Rajavashisth, T.B. 1999. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques. Evidence for activation by proinflammatory mediators. Circulation 99: 3103–3109.

    PubMed  CAS  Google Scholar 

  17. Siwik, D.A., D.L.F. Chang, and W.S. Colucci. 2000. Interleukin-1b and tumor necrosis factor-a decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circulation Research 86: 1259–1265.

    PubMed  CAS  Google Scholar 

  18. Ferroni, P., S. Basili, F. Martini, C.M. Cardarello, F. Ceci, M. Di Franco, G. Bertazzoni, P.P. Gazzaniga, and C. Alessandri. 2003. Serum metalloproteinase 9 levels in patients with coronary artery disease: A novel marker of inflammation. Journal of Investigative Medicine 51: 295–300.

    Article  PubMed  CAS  Google Scholar 

  19. Baigent, C., A. Keech, P.M. Kearney, L. Blackwell, G. Buck, C. Pollicino, A. Kirby, T. Sourjina, R. Peto, R. Collins, R. Simes, and Cholesterol Treatment Trialists' (CTT) Collaborators. 2005. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366: 1267–1278.

    Article  PubMed  CAS  Google Scholar 

  20. Kwak, B.R., F. Mulhaupt, and F. Mach. 2003. Atherosclerosis: Anti-inflammatory and immunomodulatory activities of statins. Autoimmunity Review 2: 332–338.

    Article  CAS  Google Scholar 

  21. Bellosta, S., D. Via, M. Canavesi, P. Pfister, R. Fumagalli, R. Paoletti, and F. Bernini. 1998. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology 18: 1671–1678.

    PubMed  CAS  Google Scholar 

  22. Fukumoto, Y., P. Libby, E. Rabkin, C.C. Hill, M. Enomoto, Y. Hirouchi, M. Shiomi, and M. Aikawa. 2001. Statins alter smooth muscle cell accumulation and collagen content in established atheroma of watanabe heritable hyperlipidemic rabbits. Circulation 103: 993–999.

    PubMed  CAS  Google Scholar 

  23. Sukhova, G.K., J.K. Williams, and P. Libby. 2002. Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology 22: 1452–1458.

    Article  PubMed  CAS  Google Scholar 

  24. Voleti, B., and A. Agrawal. 2006. Statins and nitric oxide reduce C-reactive protein production while inflammatory conditions persist. Molecular Immunology 43: 891–896.

    Article  PubMed  CAS  Google Scholar 

  25. Hakamada-Taguchi, R., Y. Uehara, K. Kuribayashi, A. Numabe, K. Saito, H. Negoro, T. Fujita, T. Toyo-oka, and T. Kato. 2003. Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circulation Research 93: 948–956.

    Article  PubMed  CAS  Google Scholar 

  26. Ridker, P.M., N. Rifai, M.A. Pfeffer, F. Sacks, and E. Braunwald. 1999. Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation 100: 230–235.

    PubMed  CAS  Google Scholar 

  27. Jialal, I., D. Stein, D. Balis, S.M. Grundy, B. Adams-Huet, and S. Devaraj. 2001. Effect of hydroxymethyl glutaryl coenzyme A reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation 103: 1933–1035.

    PubMed  CAS  Google Scholar 

  28. Wiklund, O., L. Mattsson-Hultén, E. Hurt-Camejo, and J. Oscarsson. 2002. Effects of simvastatin and atorvastatin on inflammation markers in plasma. Journal of Internal Medicine 251: 338–347.

    Article  PubMed  CAS  Google Scholar 

  29. März, W., K. Winkler, M. Nauck, B.O. Böhm, and B.R. Winkelmann. 2003. Effects of statins on C-reactive protein and Interleukin-6 (The Ludwigshafen Risk and Cardiovascular Health Study). The American Journal of Cardiology 92: 305–308.

    Article  PubMed  Google Scholar 

  30. Crisby, M., G. Nordin-Fredriksson, P.K. Shah, J. Yano, J. Zhu, and J. Nilsson. 2001. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: Implications for plaque stabilization. Circulation 103: 926–933.

    PubMed  CAS  Google Scholar 

  31. Koh, K.K., J.W. Son, J.Y. Ahn, D.K. Jin, H.S. Kim, Y.M. Choi, and D.S. Kim. 2002. Comparative effects of diet and statin on NO bioactivity and matrix metalloproteinases in hypercholesterolemic patients with coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology 22: e19–e23.

    Article  PubMed  Google Scholar 

  32. Noji, Y., T. Higashikata, A. Inazu, A. Nohara, K. Ueda, S. Miyamoto, K. Kajinami, T. Takegoshi, J. Koizumi, H. Mabuchi, and Hokuriku NK-104 Study Group. 2002. Long-term treatment with pitavastatin (NK-104), a new HMG-CoA reductase inhibitor, of patients with heterozygous familial hypercholesterolemia. Atherosclerosis 163: 157–164.

    Article  PubMed  CAS  Google Scholar 

  33. Son, J.W., K.K. Koh, J.Y. Ahn, D.K. Jin, G.S. Park, D.S. Kim, and E.K. Shin. 2003. Effects of statin on plaque stability and thrombogenicity in hypercholesterolemic patients with coronary artery disease. International Journal of Cardiology 88: 77–82.

    Article  PubMed  Google Scholar 

  34. Link, A., T. Ayadhi, M. Böhm, and G. Nickenig. 2006. Rapid immunomodulation by rosuvastatin in patients with acute coronary syndrome. European Heart Journal 27: 2945–2955.

    Article  PubMed  CAS  Google Scholar 

  35. Cherfan, P., A. Tompa, L.S. WikbyA, and L. Jonasson. 2007. Effects of simvastatin on human T cells in vivo. Atherosclerosis 193: 186–192.

    Article  PubMed  CAS  Google Scholar 

  36. Meisser, A., M. Cohen, and P. Bischof. 2005. Concentrations of circulating gelatinases (matrix metalloproteinase-2 and -9) are dependent on the conditions of blood collection. Clinical Chemistry 51: 274–276.

    Article  PubMed  CAS  Google Scholar 

  37. Arnaud, C., F. Burger, S. Steffens, N.R. Veillard, T.H. Nguyen, D. Trono, and F. Mach. 2005. Statins reduce interleukin-6-induced C-reactive protein in human hepatocytes: New evidence for direct anti-inflammatory effects of statins. Arteriosclerosis, Thrombosis, and Vascular Biology 25: 1231–1236.

    Article  PubMed  CAS  Google Scholar 

  38. Kalela, A., R. Laaksonen, T. Lehtimäki, T.A. Koivu, M. Höyhtyä, T. Janatuinen, and P. Pöllänen. 2001. Effect of pravastatin in mildly hypercholesterolemic young men on serum matrix metalloproteinases. The American Journal of Cardiology 88(173–175): A6.

    Google Scholar 

  39. Malik, J., T. Stulc, and R. Ceska. 2005. Matrix metalloproteinases in isolated hypercholesterolemia. International Angiology 24: 300–303.

    PubMed  CAS  Google Scholar 

  40. Huang, C.Y., T.C. Wu, W.T. Lin, H.B. Leu, C.P. Lin, S.J. Lin, and J.W. Chen. 2006. Effects of simvastatin withdrawal on serum matrix metalloproteinases in hypercholesterolaemic patients. European Journal of Clinical Investigation 36: 76–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Nilsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, L., Eriksson, P., Cherfan, P. et al. Effects of Simvastatin on Proinflammatory Cytokines and Matrix Metalloproteinases in Hypercholesterolemic Individuals. Inflammation 34, 225–230 (2011). https://doi.org/10.1007/s10753-010-9227-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9227-y

KEY WORDS

Navigation