Skip to main content

Advertisement

Log in

Walnut Extract Inhibits LPS-induced Activation of Bv-2 Microglia via Internalization of TLR4: Possible Involvement of Phospholipase D2

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Walnuts are a rich source of essential fatty acids, including the polyunsaturated fatty acids alpha-linolenic acid and linoleic acid. Essential fatty acids have been shown to modulate a number of cellular processes in the brain, including the activation state of microglia. Microglial activation can result in the generation of cytotoxic intermediates and is associated with a variety of age-related and neurodegenerative conditions. In vitro, microglial activation can be induced with the bacterial cell wall component lipopolysaccharide (LPS). In the present study, we generated a methanolic extract of English walnuts (Juglans regia) and examined the effects of walnut extract exposure on LPS-induced activation in BV-2 microglial cells. When cells were treated with walnut extract prior to LPS stimulation, production of nitric oxide and expression of inducible nitric oxide synthase were attenuated. Walnut extract also induced a decrease in tumor necrosis-alpha (TNFα) production. We further found that walnut extract induced internalization of the LPS receptor, toll-like receptor 4, and that the anti-inflammatory effects of walnut were dependent on functional activation of phospholipase D2. These studies represent the first to describe the anti-inflammatory effects of walnuts in microglia, which could lead to nutritional interventions in the prevention and treatment of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hanisch, U.K., and H. Kettenmann. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience 10: 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  2. Ladeby, R., M. Wirenfeldt, D. Garcia-Ovejero, C. Fenger, L. Dissing-Olesen, I. Dalmau, and B. Finsen. 2005. Microglial cell population dynamics in the injured adult central nervous system. Brain Research Brain Research Reviews 48: 196–206.

    Article  CAS  PubMed  Google Scholar 

  3. Lee, S.J., and S. Lee. 2002. Toll-like receptors and inflammation in the CNS. Current Drug Targets Inflammation Allergy 1: 181–191.

    Article  CAS  PubMed  Google Scholar 

  4. Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nature Reviews Immunology 4: 499–511.

    Article  CAS  PubMed  Google Scholar 

  5. De Smedt-Peyrusse, V., F. Sargueil, A. Moranis, H. Harizi, S. Mongrand, and S. Laye. 2008. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. Journal of Neurochemistry 105: 296–307.

    Article  PubMed  Google Scholar 

  6. Ros, E., and J. Mataix. 2006. Fatty acid composition of nuts—implications for cardiovascular health. British Journal of Nutrition 96(Suppl 2): S29–S35.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, J.Y., J. Ye, Z. Gao, H.S. Youn, W.H. Lee, L. Zhao, N. Sizemore, and D.H. Hwang. 2003. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. Journal of Biological Chemistry 278: 37041–37051.

    Article  CAS  PubMed  Google Scholar 

  8. Weatherill, A.R., J.Y. Lee, L. Zhao, D.G. Lemay, H.S. Youn, and D.H. Hwang. 2005. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. Journal of Immunology 174: 5390–5397.

    CAS  Google Scholar 

  9. Moon, D.O., K.C. Kim, C.Y. Jin, M.H. Han, C. Park, K.J. Lee, Y.M. Park, Y.H. Choi, and G.Y. Kim. 2007. Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. International Immunopharmacology 7: 222–229.

    Article  CAS  PubMed  Google Scholar 

  10. Colley, W.C., T.C. Sung, R. Roll, J. Jenco, S.M. Hammond, Y. Altshuller, D. Bar-Sagi, A.J. Morris, and M.A. Frohman. 1997. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Current Biology 7: 191–201.

    Article  CAS  PubMed  Google Scholar 

  11. Rankovic, M., L. Jacob, V. Rankovic, L.O. Brandenburg, H. Schroder, V. Hollt, and T. Koch. 2009. ADP-ribosylation factor 6 regulates mu-opioid receptor trafficking and signaling via activation of phospholipase D2. Cell Signal 21(12): 1784–1793.

    Article  CAS  PubMed  Google Scholar 

  12. Dhami, G.K., and S.S. Ferguson. 2006. Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacology and Therapeutics 111: 260–271.

    Article  CAS  PubMed  Google Scholar 

  13. Padron, D., R.D. Tall, and M.G. Roth. 2006. Phospholipase D2 is required for efficient endocytic recycling of transferrin receptors. Molecular Biology of the Cell 17: 598–606.

    Article  CAS  PubMed  Google Scholar 

  14. Shen, Y., L. Xu, and D.A. Foster. 2001. Role for phospholipase D in receptor-mediated endocytosis. Molecular and Cellular Biology 21: 595–602.

    Article  CAS  PubMed  Google Scholar 

  15. Lentschat, A., H. Karahashi, K.S. Michelsen, L.S. Thomas, W. Zhang, S.N. Vogel, and M. Arditi. 2005. Mastoparan, a G protein agonist peptide, differentially modulates TLR4- and TLR2-mediated signaling in human endothelial cells and murine macrophages. Journal of Immunology 174: 4252–4261.

    CAS  Google Scholar 

  16. Papoutsi, Z., E. Kassi, I. Chinou, M. Halabalaki, L.A. Skaltsounis, and P. Moutsatsou. 2008. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. British Journal of Nutrition 99: 715–722.

    Article  CAS  PubMed  Google Scholar 

  17. Chauhan, N., K.C. Wang, J. Wegiel, and M.N. Malik. 2004. Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Current Alzheimer Research 1: 183–188.

    Article  CAS  PubMed  Google Scholar 

  18. Lichtenstein, A.H., N.R. Matthan, S.M. Jalbert, N.A. Resteghini, E.J. Schaefer, and L.M. Ausman. 2006. Novel soybean oils with different fatty acid profiles alter cardiovascular disease risk factors in moderately hyperlipidemic subjects. American Journal of Clinical Nutrition 84: 497–504.

    CAS  PubMed  Google Scholar 

  19. SLM, M.W.R. 1964. Preparation of fatty acid methyl esters and dimethylacetyls from lipids with boron fluoride-methanol. Journal of Lipid Research 5: 600–608.

    Google Scholar 

  20. Miller, R.L., G.Y. Sun, and A.Y. Sun. 2007. Cytotoxicity of paraquat in microglial cells: involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Research 1167: 129–139.

    Article  CAS  PubMed  Google Scholar 

  21. Crews, C., P. Hough, J. Godward, P. Brereton, M. Lees, S. Guiet, and W. Winkelmann. 2005. Study of the main constituents of some authentic walnut oils. Journal of Agricultural and Food Chemistry 53: 4853–4860.

    Article  CAS  PubMed  Google Scholar 

  22. Ohata, T., K. Fukuda, M. Takahashi, T. Sugimura, and K. Wakabayashi. 1997. Suppression of nitric oxide production in lipopolysaccharide-stimulated macrophage cells by omega 3 polyunsaturated fatty acids. Japanese Journal of Cancer Research 88: 234–237.

    CAS  PubMed  Google Scholar 

  23. Lee, J.Y., K.H. Sohn, S.H. Rhee, and D. Hwang. 2001. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. Journal of Biological Chemistry 276: 16683–16689.

    Article  CAS  PubMed  Google Scholar 

  24. Aldridge, C., A. Razzak, T.A. Babcock, W.S. Helton, and N.J. Espat. 2008. Lipopolysaccharide-stimulated RAW 264.7 macrophage inducible nitric oxide synthase and nitric oxide production is decreased by an omega-3 fatty acid lipid emulsion. Journal of Surgical Research 149: 296–302.

    Article  CAS  PubMed  Google Scholar 

  25. Oh, Y.T., J.Y. Lee, J. Lee, H. Kim, K.S. Yoon, W. Choe, and I. Kang. 2009. Oleic acid reduces lipopolysaccharide-induced expression of iNOS and COX-2 in BV2 murine microglial cells: Possible involvement of reactive oxygen species, p38 MAPK, and IKK/NF-kappaB signaling pathways. Neurosci Lett 464: 93–97.

    Article  CAS  PubMed  Google Scholar 

  26. Ren, J., and S.H. Chung. 2007. Anti-inflammatory effect of alpha-linolenic acid and its mode of action through the inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-kappaB and mitogen-activated protein kinase pathways. Journal of Agricultural and Food Chemistry 55: 5073–5080.

    Article  CAS  PubMed  Google Scholar 

  27. Husebye, H., O. Halaas, H. Stenmark, G. Tunheim, O. Sandanger, B. Bogen, A. Brech, E. Latz, and T. Espevik. 2006. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. Embo Journal 25: 683–692.

    Article  CAS  PubMed  Google Scholar 

  28. Gemeinhardt, A., M. Alfalah, T. Guck, H.Y. Naim, and H. Fuhrmann. 2009. The influence of linoleic and linolenic acid on the activity and intracellular localisation of phospholipase D in COS-1 cells. Biological Chemistry 390: 253–258.

    Article  CAS  PubMed  Google Scholar 

  29. Kakimura, J., Y. Kitamura, K. Takata, M. Umeki, S. Suzuki, K. Shibagaki, T. Taniguchi, Y. Nomura, P.J. Gebicke-Haerter, M.A. Smith, G. Perry, and S. Shimohama. 2002. Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. Faseb Journal 16: 601–603.

    CAS  PubMed  Google Scholar 

  30. Lehnardt, S., L. Massillon, P. Follett, F.E. Jensen, R. Ratan, P.A. Rosenberg, J.J. Volpe, and T. Vartanian. 2003. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America 100: 8514–8519.

    Article  CAS  PubMed  Google Scholar 

  31. Stefanova, N., M. Reindl, M. Neumann, P.J. Kahle, W. Poewe, and G.K. Wenning. 2007. Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Movement Disorders 22: 2196–2203.

    Article  PubMed  Google Scholar 

  32. Bsibsi, M., R. Ravid, D. Gveric, and J.M. van Noort. 2002. Broad expression of Toll-like receptors in the human central nervous system. Journal of Neuropathology and Experimental Neurology 61: 1013–1021.

    CAS  PubMed  Google Scholar 

  33. Letiembre, M., W. Hao, Y. Liu, S. Walter, I. Mihaljevic, S. Rivest, T. Hartmann, and K. Fassbender. 2007. Innate immune receptor expression in normal brain aging. Neuroscience 146: 248–254.

    Article  CAS  PubMed  Google Scholar 

  34. Lin, Y.H., and N. Salem Jr. 2007. Whole body distribution of deuterated linoleic and {alpha}-linolenic acids and their metabolites in the rat. Journal of Lipid Research 48: 2709–2724.

    Article  CAS  PubMed  Google Scholar 

  35. Hrelia, S., A. Bordoni, M. Celadon, E. Turchetto, P.L. Biagi, and C.A. Rossi. 1989. Age-related changes in linoleate and alpha-linolenate desaturation by rat liver microsomes. Biochemical and Biophysical Research Communications 163: 348–355.

    Article  CAS  PubMed  Google Scholar 

  36. Rapoport, S.I., M.C. Chang, and A.A. Spector. 2001. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. Journal of Lipid Research 42: 678–685.

    CAS  PubMed  Google Scholar 

  37. Willis, L.M., B. Shukitt-Hale, V. Cheng, and J.A. Joseph. 2009. Dose-dependent effects of walnuts on motor and cognitive function in aged rats. British Journal of Nutrition 101: 1140–1144.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Joseph.

Additional information

The present study was funded in part by the California Walnut Commission (Sacramento, CA, USA)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willis, L.M., Bielinski, D.F., Fisher, D.R. et al. Walnut Extract Inhibits LPS-induced Activation of Bv-2 Microglia via Internalization of TLR4: Possible Involvement of Phospholipase D2. Inflammation 33, 325–333 (2010). https://doi.org/10.1007/s10753-010-9189-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9189-0

KEY WORDS

Navigation