Skip to main content

Advertisement

Log in

Squamous Carcinoma Cells Influence Monocyte Phenotype and Suppress Lipopolysaccharide-Induced TNF-alpha in Monocytes

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Bacteria and chronic inflammation are present in squamous cell carcinoma of the head and neck (HNSCC), but their roles in the pathogenesis of HNSCC are unclear. Our studies described here revealed that human monocytes co-cultured short term with HNSCC cells were more likely to express CD16, and CD16+ small mononuclear cells were common in HNSCC specimens. In addition, we identified monocytes as the primary source of LPS-induced IL-6 and TNF-alpha in the monocyte-HNSCC co-cultures. Remarkably, relative to LPS-stimulated monocytes cultured alone, HNSCC cells profoundly suppressed LPS-induced TNF-alpha in monocytes, without compromising IL-6 production. High levels of cytoprotective factors like IL-6 and low levels of TNF-alpha are important for the tumor microenvironment that enables tumor cell survival, affects monocyte differentiation and may contribute to tumor colonization by bacteria. This study provides novel observations that HNSCC cells affect monocyte phenotype and function, which are relevant to the regulation of the HNSCC microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CCR:

CC chemokine receptor

DC:

Dendritic cell(s)

DC-SIGN:

DC-specific intercellular adhesion molecule 3-grabbing non-integrin

DMEM:

Dulbecco’s Modified Eagle’s Medium

ELISA:

Enzyme-linked immunosorbent assay

FACS:

Fluorescence-activated cell sorting

FBS:

Fetal bovine serum

GLM:

Generalized linear model

HBD:

Human beta-defensin

HLA-DR:

Human leukocyte antigen-DR (class II)

HNSCC:

Head and neck squamous cell carcinoma

HRP-DAB:

Horseradish peroxidase-diaminobenzidine

IHC:

Immunohistochemistry

IL:

Interleukin

KSFM:

Keratinocyte Serum-Free Medium

LPS:

Lipopolysaccharide

MFI:

Mean fluorescence intensity

PBS:

Phosphate-buffered saline

SAS:

Statistical analysis software

STAT:

Signal transducer and activator of transcription

TCA:

Trichloroacetic acid

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TMB:

Tetramethylbenzidine

TNF:

Tumor necrosis factor

References

  1. Gallo, O., A.M. Gori, M. Attanasio, F. Martini, B. Giusti, T. Brunelli, et al. 1995. Interleukin-6 and acute-phase proteins in head and neck cancer. European Archives of Oto-Rhino-Laryngology 252: 159–162.

    Article  PubMed  CAS  Google Scholar 

  2. Druzgal, C.H., Z. Chen, N.T. Yeh, G.R. Thomas, F.G. Ondrey, D.C. Duffey, et al. 2005. A pilot study of longitudinal serum cytokine and angiogenesis factor levels as markers of therapeutic response and survival in patients with head and neck squamous cell carcinoma. Head and Neck 27: 771–784.

    Article  PubMed  Google Scholar 

  3. Chen, Z., P.S. Malhotra, G.R. Thomas, F.G. Ondrey, D.C. Duffey, C.W. Smith, et al. 1999. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clinical Cancer Research 5: 1369–1379.

    PubMed  CAS  Google Scholar 

  4. Sparano, A., D.M. Lathers, N. Achille, G.J. Petruzzelli, and M.R. Young. 2004. Modulation of Th1 and Th2 cytokine profiles and their association with advanced head and neck squamous cell carcinoma. Otolaryngology - Head and Neck Surgery 131: 573–576.

    Article  PubMed  Google Scholar 

  5. Yin, W., S. Cheepala, J.N. Roberts, K. Syson-Chan, J. DiGiovanni, and J.L. Clifford. 2006. Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions. Molecular Cancer 5: 15.

    Article  PubMed  CAS  Google Scholar 

  6. Buettner, R., L.B. Mora, and R. Jove. 2002. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clinical Cancer Research 8: 945–954.

    PubMed  CAS  Google Scholar 

  7. Hirano, T., K. Ishihara, and M. Hibi. 2000. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19: 2548–2556.

    Article  PubMed  CAS  Google Scholar 

  8. Squarize, C.H., R.M. Castilho, V. Sriuranpong, D.S. Pinto Jr., and J.S. Gutkind. 2006. Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia 8: 733–746.

    Article  PubMed  CAS  Google Scholar 

  9. Sriuranpong, V., J.I. Park, P. Amornphimoltham, V. Patel, B.D. Nelkin, and J.S. Gutkind. 2003. Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer Research 63: 2948–2956.

    PubMed  CAS  Google Scholar 

  10. Hodge, D.R., E.M. Hurt, and W.L. Farrar. 2005. The role of IL-6 and STAT3 in inflammation and cancer. European Journal of Cancer 41: 2502–2512.

    Article  PubMed  CAS  Google Scholar 

  11. Grandis, J.R., S.D. Drenning, Q. Zeng, S.C. Watkins, M.F. Melhem, S. Endo, et al. 2000. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America 97: 4227–4232.

    Article  PubMed  CAS  Google Scholar 

  12. Woods, K.V., A. El-Naggar, G.L. Clayman, and E.A. Grimm. 1998. Variable expression of cytokines in human head and neck squamous cell carcinoma cell lines and consistent expression in surgical specimens. Cancer Research 58: 3132–3141.

    PubMed  CAS  Google Scholar 

  13. Kurago, Z.B., A. Lamubol, A. Stetsenko, C. De La Mater, Y. Chen, and D.V. Dawson. 2008. Lipopolysaccharide-squamous cell carcinoma-monocyte interactions induce cancer-supporting factors leading to rapid STAT3 activation. Head and Neck Pathology 2: 1–12.

    Article  PubMed  Google Scholar 

  14. Ohta, M., Y. Kitadai, S. Tanaka, M. Yoshihara, W. Yasui, N. Mukaida, et al. 2002. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. International Journal of Cancer 102: 220–224.

    Article  CAS  Google Scholar 

  15. Koide, N., A. Nishio, T. Sato, A. Sugiyama, and S. Miyagawa. 2004. Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. American Journal of Gastroenterology 99: 1667–1674.

    Article  PubMed  CAS  Google Scholar 

  16. Li, C., S. Shintani, N. Terakado, K. Nakashiro, and H. Hamakawa. 2002. Infiltration of tumor-associated macrophages in human oral squamous cell carcinoma. Oncology Reports 9: 1219–1223.

    PubMed  Google Scholar 

  17. Marcus, B., D. Arenberg, J. Lee, C. Kleer, D.B. Chepeha, C.E. Schmalbach, et al. 2004. Prognostic factors in oral cavity and oropharyngeal squamous cell carcinoma. Cancer 101: 2779–2787.

    Article  PubMed  Google Scholar 

  18. Sakamoto, H., J. Sasaki, and C.E. Nord. 1999. Association between bacterial colonization on the tumor, bacterial translocation to the cervical lymph nodes and subsequent postoperative infection in patients with oral cancer. Clinical Microbiology & Infection 5: 612–616.

    Article  Google Scholar 

  19. Hooper, S.J., S.J. Crean, M.A. Lewis, D.A. Spratt, W.G. Wade, and M.J. Wilson. 2006. Viable bacteria present within oral squamous cell carcinoma tissue. Journal of Clinical Microbiology 44: 1719–1725.

    Article  PubMed  Google Scholar 

  20. Hooper, S.J., S.J. Crean, M.J. Fardy, M.A. Lewis, D.A. Spratt, W.G. Wade, et al. 2007. A molecular analysis of the bacteria present within oral squamous cell carcinoma. Journal of Medical Microbiology 56: 1651–1659.

    Article  PubMed  CAS  Google Scholar 

  21. Sakamoto, H., H. Naito, Y. Ohta, R. Tanakna, N. Maeda, J. Sasaki, et al. 1999. Isolation of bacteria from cervical lymph nodes in patients with oral cancer. Archives of Oral Biology 44: 789–793.

    Article  PubMed  CAS  Google Scholar 

  22. Kelly, M.G., A.B. Alvero, R. Chen, D.A. Silasi, V.M. Abrahams, S. Chan, et al. 2006. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Research 66: 3859–3868.

    Article  PubMed  CAS  Google Scholar 

  23. Fukata, M., and M.T. Abreu. 2008. Role of Toll-like receptors in gastrointestinal malignancies. Oncogene 27: 234–243.

    Article  PubMed  CAS  Google Scholar 

  24. Kundu, S.D., C. Lee, B.K. Billips, G.M. Habermacher, Q. Zhang, V. Liu, et al. 2008. The toll-like receptor pathway: A novel mechanism of infection-induced carcinogenesis of prostate epithelial cells. The Prostate 68: 223–229.

    Article  PubMed  CAS  Google Scholar 

  25. Santiago, C., B. Pagan, A.A. Isidro, and C.B. Appleyard. 2007. Prolonged chronic inflammation progresses to dysplasia in a novel rat model of colitis-associated colon cancer. Cancer Research 67: 10766–10773.

    Article  PubMed  CAS  Google Scholar 

  26. Huang, B., J. Zhao, S. Shen, H. Li, K.L. He, G.X. Shen, et al. 2007. Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Research 67: 4346–4352.

    Article  PubMed  CAS  Google Scholar 

  27. van der Bruggen, T., S. Nijenhuis, E. van Raaij, J. Verhoef, and B.S. van Asbeck. 1999. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infection and Immunity 67: 3824–3829.

    PubMed  Google Scholar 

  28. Balkwill, F.R., A. Lee, G. Aldam, E. Moodie, J.A. Thomas, J. Tavernier, et al. 1986. Human tumor xenografts treated with recombinant human tumor necrosis factor alone or in combination with interferons. Cancer Research 46: 3990–3993.

    PubMed  CAS  Google Scholar 

  29. Strangfeld, A., and J. Listing. 2006. Infection and musculoskeletal conditions: Bacterial and opportunistic infections during anti-TNF therapy. Best Practice & Research Clinical Rheumatology 20: 1181–1195.

    Article  CAS  Google Scholar 

  30. Larrick, J.W., and S.C. Wright. 1990. Cytotoxic mechanism of tumor necrosis factor-alpha. Faseb Journal 4: 3215–3223.

    PubMed  CAS  Google Scholar 

  31. Sacchi, M., I. Klapan, J.T. Johnson, and T.L. Whiteside. 1991. Antiproliferative effects of cytokines on squamous cell carcinoma. Archives of Otolaryngology - Head and Neck Surgery 117: 321–326.

    PubMed  CAS  Google Scholar 

  32. Kim, K.D., J. Zhao, S. Auh, X. Yang, P. Du, H. Tang, et al. 2007. Adaptive immune cells temper initial innate responses. Nature Medicine 13: 1248–1252.

    Article  PubMed  CAS  Google Scholar 

  33. Okamoto, H., K. Mizuno, and T. Horio. 2003. Circulating CD14+ CD16+ monocytes are expanded in sarcoidosis patients. Journal of Dermatology 30: 503–509.

    PubMed  Google Scholar 

  34. Kawanaka, N., M. Yamamura, T. Aita, Y. Morita, A. Okamoto, M. Kawashima, et al. 2002. CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis and Rheumatism 46: 2578–2586.

    Article  PubMed  CAS  Google Scholar 

  35. Soares, G., A. Barral, J.M. Costa, M. Barral-Netto, and J. Van Weyenbergh. 2006. CD16+ monocytes in human cutaneous leishmaniasis: increased ex vivo levels and correlation with clinical data. Journal of Leukocyte Biology 79: 36–39.

    Article  PubMed  CAS  Google Scholar 

  36. Ziegler-Heitbrock, L. 2007. The CD14+ CD16+ blood monocytes: Their role in infection and inflammation. Journal of Leukocyte Biology 81: 584–592.

    Article  PubMed  CAS  Google Scholar 

  37. Grip, O., A. Bredberg, S. Lindgren, and G. Henriksson. 2007. Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn’s disease. Inflammatory Bowel Diseases 13: 566–572.

    Article  PubMed  Google Scholar 

  38. Saleh, M.N., S.J. Goldman, A.F. LoBuglio, A.C. Beall, H. Sabio, M.C. McCord, et al. 1995. CD16+ monocytes in patients with cancer: spontaneous elevation and pharmacologic induction by recombinant human macrophage colony-stimulating factor. Blood 85: 2910–2917.

    PubMed  CAS  Google Scholar 

  39. Randolph, G.J., G. Sanchez-Schmitz, R.M. Liebman, and K. Schakel. 2002. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. Journal of Experimental Medicine 196: 517–527.

    Article  PubMed  CAS  Google Scholar 

  40. Varol, C., L. Landsman, D.K. Fogg, L. Greenshtein, B. Gildor, R. Margalit, et al. 2007. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. Journal of Experimental Medicine 204: 171–180.

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka, M., J. Honda, Y. Imamura, K. Shiraishi, K. Tanaka, and K. Oizumi. 1999. Surface phenotype analysis of CD16+ monocytes from leukapheresis collections for peripheral blood progenitors. Clinical and Experimental Immunology 116: 57–61.

    Article  PubMed  CAS  Google Scholar 

  42. Ancuta, P., L. Weiss, and N. Haeffner-Cavaillon. 2000. CD14+CD16++ cells derived in vitro from peripheral blood monocytes exhibit phenotypic and functional dendritic cell-like characteristics. European Journal of Immunology 30: 1872–1883.

    Article  PubMed  CAS  Google Scholar 

  43. Logullo, A.F., S. Nonogaki, R.E. Miguel, L.P. Kowalski, I.N. Nishimoto, F.S. Pasini, et al. 2003. Transforming growth factor beta1 (TGFbeta1) expression in head and neck squamous cell carcinoma patients as related to prognosis. Journal of Oral Pathology & Medicine 32: 139–145.

    Article  CAS  Google Scholar 

  44. Marsh, C.B., M.D. Wewers, L.C. Tan, and B.H. Rovin. 1997. Fc(gamma) receptor cross-linking induces peripheral blood mononuclear cell monocyte chemoattractant protein-1 expression: role of lymphocyte Fc(gamma)RIII. Journal of Immunology 158: 1078–1084.

    CAS  Google Scholar 

  45. Wang, Z.Q., A.S. Bapat, R.J. Rayanade, A.S. Dagtas, and M.K. Hoffmann. 2001. Interleukin-10 induces macrophage apoptosis and expression of CD16 (FcgammaRIII) whose engagement blocks the cell death programme and facilitates differentiation. Immunology 102: 331–337.

    Article  PubMed  CAS  Google Scholar 

  46. Polumuri, S.K., V.Y. Toshchakov, and S.N. Vogel. 2007. Role of phosphatidylinositol-3 kinase in transcriptional regulation of TLR-induced IL-12 and IL-10 by Fc gamma receptor ligation in murine macrophages. Journal of Immunology 179: 236–246.

    CAS  Google Scholar 

  47. Song, J.I., and J.R. Grandis. 2000. STAT signaling in head and neck cancer. Oncogene 19: 2489–2495.

    Article  PubMed  CAS  Google Scholar 

  48. Lucey, D.R., M. Clerici, and G.M. Shearer. 1996. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clinical Microbiology Reviews 9: 532–562.

    PubMed  CAS  Google Scholar 

  49. Diehl, S., and M. Rincon. 2002. The two faces of IL-6 on Th1/Th2 differentiation. Molecular Immunology 39: 531–536.

    Article  PubMed  CAS  Google Scholar 

  50. O’Farrell, A.M., Y. Liu, K.W. Moore, and A.L. Mui. 1998. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. Embo Journal 17: 1006–1018.

    Article  PubMed  Google Scholar 

  51. Cheng, F., H.W. Wang, A. Cuenca, M. Huang, T. Ghansah, J. Brayer, et al. 2003. A critical role for Stat3 signaling in immune tolerance. Immunity 19: 425–436.

    Article  PubMed  CAS  Google Scholar 

  52. Williams, L., L. Bradley, A. Smith, and B. Foxwell. 2004. Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. Journal of Immunology 172: 567–576.

    CAS  Google Scholar 

  53. Murray, P.J. 2006. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Current Opinion in Pharmacology 6: 379–386.

    Article  PubMed  CAS  Google Scholar 

  54. Nishiki, S., F. Hato, N. Kamata, E. Sakamoto, T. Hasegawa, A. Kimura-Eto, et al. 2004. Selective activation of STAT3 in human monocytes stimulated by G-CSF: implication in inhibition of LPS-induced TNF-alpha production. American Journal of Physiology. Cell Physiology 286: C1302–C1311.

    Article  PubMed  CAS  Google Scholar 

  55. del Fresno, C., K. Otero, L. Gomez-Garcia, M.C. Gonzalez-Leon, L. Soler-Ranger, P. Fuentes-Prior, et al. 2005. Tumor cells deactivate human monocytes by up-regulating IL-1 receptor associated kinase-M expression via CD44 and TLR4. Journal of Immunology 174: 3032–3040.

    Google Scholar 

  56. Mytar, B., M. Woloszyn, R. Szatanek, M. Baj-Krzyworzeka, M. Siedlar, I. Ruggiero, et al. 2003. Tumor cell-induced deactivation of human monocytes. Journal of Leukocyte Biology 74: 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  57. Franzmann, E.J., G.L. Schroeder, W.J. Goodwin, D.T. Weed, P. Fisher, and V.B. Lokeshwar. 2003. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. International Journal of Cancer 106: 438–445.

    Article  CAS  Google Scholar 

  58. Yasuda, T. 2007. Hyaluronan inhibits cytokine production by lipopolysaccharide-stimulated U937 macrophages through down-regulation of NF-kappaB via ICAM-1. Inflammation Research 56: 246–253.

    Article  PubMed  CAS  Google Scholar 

  59. Bose, A., T. Chakraborty, K. Chakraborty, S. Pal, and R. Baral. 2008. Dysregulation in immune functions is reflected in tumor cell cytotoxicity by peripheral blood mononuclear cells from head and neck squamous cell carcinoma patients. Cancer Immunity 8: 10.

    PubMed  Google Scholar 

  60. Lopez-Gonzalez, J.S., F. Avila-Moreno, H. Prado-Garcia, D. Aguilar-Cazares, J.J. Mandoki, and M. Meneses-Flores. 2007. Lung carcinomas decrease the number of monocytes/macrophages (CD14+ cells) that produce TNF-alpha. Clinical Immunology 122: 323–329.

    Article  PubMed  CAS  Google Scholar 

  61. Briskin, K.B., C. Fady, M. Wang, and A. Lichtenstein. 1996. Apoptotic inhibition of head and neck squamous cell carcinoma cells by tumor necrosis factor alpha. Archives of Otolaryngology - Head and Neck Surgery 122: 559–563.

    PubMed  CAS  Google Scholar 

  62. Mochimatsu, I., M. Tsukuda, S. Furukawa, S. Watanabe, A. Kubota, and S. Yanoma. 1993. The sensitivity of head and neck squamous cell carcinomas to tumor necrosis factor-alpha. Biotherapy 6: 239–244.

    Article  PubMed  CAS  Google Scholar 

  63. Balkwill, F. 2002. Tumor necrosis factor or tumor promoting factor? Cytokine and Growth Factor Reviews 13: 135–141.

    Article  PubMed  CAS  Google Scholar 

  64. Fajardo, L.F., H.H. Kwan, J. Kowalski, S.D. Prionas, and A.C. Allison. 1992. Dual role of tumor necrosis factor-alpha in angiogenesis. American Journal of Pathology 140: 539–544.

    PubMed  CAS  Google Scholar 

  65. Wu, S., C.M. Boyer, R.S. Whitaker, A. Berchuck, J.R. Wiener, J.B. Weinberg, et al. 1993. Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: Monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Research 53: 1939–1944.

    PubMed  CAS  Google Scholar 

  66. Lejeune, F.J. 2002. Clinical use of TNF revisited: Improving penetration of anti-cancer agents by increasing vascular permeability. Journal of Clinical Investigation 110: 433–435.

    PubMed  CAS  Google Scholar 

  67. Iwamoto, S., S. Iwai, K. Tsujiyama, C. Kurahashi, K. Takeshita, M. Naoe, et al. 2007. TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. Journal of Immunology 179: 1449–1457.

    CAS  Google Scholar 

  68. Ganz, T. 2003. Defensins: Antimicrobial peptides of innate immunity. Nature Reviews. Immunology 3: 710–720.

    Article  PubMed  CAS  Google Scholar 

  69. Joly, S., C. Maze, P.B. McCray Jr., and J.M. Guthmiller. 2004. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. Journal of Clinical Microbiology 42: 1024–1029.

    Article  PubMed  CAS  Google Scholar 

  70. Singer, A.J., and R.A. Clark. 1999. Cutaneous wound healing. New England Journal of Medicine 341: 738–746.

    Article  PubMed  CAS  Google Scholar 

  71. Leibovich, S.J., and R. Ross. 1975. role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. American Journal of Pathology 78: 71–100.

    PubMed  CAS  Google Scholar 

  72. Pedersen, T.X., C. Leethanakul, V. Patel, D. Mitola, L.R. Lund, K. Dano, et al. 2003. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma. Oncogene 22: 3964–3976.

    Article  PubMed  CAS  Google Scholar 

  73. Sano, S., K.S. Chan, and J. DiGiovanni. 2008. Impact of Stat3 activation upon skin biology: A dichotomy of its role between homeostasis and diseases. Journal of Dermatological Science 50: 1–14.

    Article  PubMed  CAS  Google Scholar 

  74. Moore, M.B., Z.B. Kurago, C.A. Fullenkamp, and C.T. Lutz. 2003. Squamous cell carcinoma cells differentially stimulate NK cell effector functions: The role of IL-18. Cancer Immunology, Immunotherapy 52: 107–115.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Pathology, UI College of Medicine, and especially Teresa Duling, for access to flow cytometry. We thank Dr. Al Klingelhutz (University of Iowa) and Dr. David Levy (NYU) for the review and critique of the manuscript.

Supported by NIH2RO1DE11139-05A2 (ZBK), American Cancer Society Grant #IN-122V administered by The University of Iowa Holden Comprehensive Cancer Center (ZBK), Anandamahidol Foundation (AL), the University of Iowa Dental Student Research Assistantship program (DH), the Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, and New York University College of Dentistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoya B. Kurago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam-ubol, A., Hopkin, D., Letuchy, E.M. et al. Squamous Carcinoma Cells Influence Monocyte Phenotype and Suppress Lipopolysaccharide-Induced TNF-alpha in Monocytes. Inflammation 33, 207–223 (2010). https://doi.org/10.1007/s10753-009-9175-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9175-6

KEY WORDS

Navigation