Skip to main content
Log in

Decreased Proinflammatory Cytokines Production in Children with Complicated Parapneumonic Pleural Effusion after Intrapleural Fibrinolytic Treatment

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Intrapleural fibrinolytic therapy (IFT) provides clinical benefit in the treatment of complicated pleural parapneumonic effusion (CPE). Whether IFT influences the proinflammatory cytokines production and fibrinlytic activity is currently unclear. Therefore, we collected pleural effusion samples from CPE patients with IFT (study group) and patients without IFT (control group). A membrane human inflammatory cytokines array kit was used to compare the difference of targeted cytokine production between these two groups. Enzyme-linked immunosorbent assay (ELISA) methods were used for quantitative analysis of targeted cytokines and fibrinolytic enzymes. The results showed there were no significant differences between the study (n = 16) and control (n = 14) groups in patients’ demographic data. After fibrinolytic therapy, the patients in the study group had significant lower plasminogen activator inhibitor (PAI) level (732.36 ± 254.09 ng/mL vs 1,509.36 ± 1,340.11 ng/mL, p < 0.05) and higher urokinase plasminogen activator (u-PA) level (75.56 ± 41.70 ng/mL vs 6.87 ± 5.07 ng/mL, p < 0.05) than they did before treatment. Moreover, the tissue inhibitors of metalloproteinase-2 (TIMP-2) (1,560.03 ± 403.49 pg/mL vs 3,686.45 ± 1,263.83 pg/mL, p < 0.05) and inflammatory chemokine, regulated on activation normal T-cell expressed and secreted/chemokine (C-C motif) ligand 5 (RANTES), (293.58 ± 212.93 pg/mL vs 749.27 ± 53.79 pg/mL, p < 0.05), were also significantly lower in the study group after fibrinolytic therapy, but not in the control group. In conclusion, intrapleural fibrinolytic treatment with urokinase could enhance fibrinolytic activity and decrease TIMP-2 and RANTES production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Idell, S., C. Zwieb, A. Kumar, K. B. Koenig, and A. R. Johnson. 1992. Pathways of fibrin turnover of human pleural mesothelial cells in vitro. Am. J. Respir. Cell. Mol. Biol. 7:414–426.

    CAS  PubMed  Google Scholar 

  2. Agrenius, V., J. Chmielewska, O. Widström, and M. Blombäck. 1989. Pleural fibrinolytic activity is decreased in inflammation as demonstrated in quinacrine pleurodesis treatment of malignant pleural effusion. Am. Rev. Respir. Dis. 140:1381–1385.

    CAS  PubMed  Google Scholar 

  3. Hua, C. C., L. C. Chang, Y. C. Chen, and S. C. Chang. 1999. Proinflammatory cytokines and fibrinolytic enzymes in tuberculous and malignant pleural effusions. Chest 116:1292–1296.

    Article  CAS  PubMed  Google Scholar 

  4. Krishnan, S., N. Amin, A. J. Dozor, and G. Stringel. 1997. Urokinase in the management of complicated parapneumonic effusions in children. Chest 112:1579–1583.

    Article  CAS  PubMed  Google Scholar 

  5. Bithell, T. C. 1993. Blood coagulation. In: Wintrobe’s Clinical Hematology, 9th edn., Lee, Bithell, Foerster, eds. Philadelphia, Lea & Febiger.

    Google Scholar 

  6. Whawell, S. A., and J. N. Thompson. 1995. Cytokine-induced release of plasminogen activator inhibitor-1 by human mesothelial cells. Eur. J. Surg. 161:315–317.

    CAS  PubMed  Google Scholar 

  7. Philip-Joët, F., M. C. Alessi, C. Philip-Joët, M. Aillaud, J. R. Barriere, A. Arnaud, and I. Juhan-Vague. 1995. Fibrinolytic and inflammatory processes in pleural effusions. Eur. Respir. J. 8:1352–1356.

    Article  PubMed  Google Scholar 

  8. Chung, C. L., C. H. Chen, J. R. Sheu, Y. C. Chen, and S. C. Chang. 2005. Proinflammatory cytokines, transforming growth factor-ß1, and fibrinolytic enzymes in loculated and free-flowing pleural exudates. Chest 128:690–697.

    Article  CAS  PubMed  Google Scholar 

  9. Tillett, W. S., and S. Sherry. 1949. The effect in patients with streptococcal fibrinolysis (streptokinasse) and streptococcal desoxyribonuclease on fibrinous, purulent, and sanguinous pleural exudations. J. Clin. Invest. 28:173–190.

    Article  CAS  Google Scholar 

  10. Thomson, A. H., J. Hull, M. R. Kumar ,, C. Wallis, and I. M. Balfour Lynn. 2002. Randomised trial of intrapleural urokinase in the treatment of childhood empyema. Thorax 57:343–347.

    Article  CAS  PubMed  Google Scholar 

  11. Barbato, A., C. Panizzolo, C. Monciotti, F. Marcucci, G. Stefanutti, and P. G. Gamb Gamba. 2003. Use of urokinase in childhood pleural empyema. Pediatr. Pulmonol. 35:50–55.

    Article  CAS  PubMed  Google Scholar 

  12. Marder, V. J., and S. Sherry. 1988. Thrombolytic therapy: current status (1). N. Eng. J. Med. 318:1512–1520.

    Article  CAS  Google Scholar 

  13. Bouros, D., S. Schiza, G. Patsourakis, G. Chalkiadakis, P. Panagou, and N. Siafakas. 1997. Intrapleural streptokinasse versus normal saline in the treatment of complicated parapneumonic effusions and empyema. Am. J. Respir. Crit. Care Med. 155:291–295.

    CAS  PubMed  Google Scholar 

  14. Davies, R. J. O., Z. C. Traill, and F. V. Gleeson. 1997. Randomised controlled trial of intrapleureal streptokinase in community acquired pleural infection. Thorax 52:416–421.

    Article  CAS  PubMed  Google Scholar 

  15. Cameron, R. J., and H. R. Davies. 2008. Intra-pleural fibrinolytic therapy versus conservative management in the treatment of adult parapneumonic effusions and empyema. Cochrane Database Sys. Rev. (2): Art. No. CD002312. doi:10.1002/14651858.

  16. Yao, C. T., J. M. Wu, C. C. Liu, M. H. Wu, H. Y. Chuang, and J. N. Wang. 2004. Treatment of complicated parapneumonic pleural effusion with intrapleural streptokinase in children. Chest 125:566–570.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, J. N., C. T. Yao, C. N. Yeh, C. C. Liu, M. H. Wu, H. Y. Chuang, and J. M. Wu. 2006. Once-daily versus twice-daily intrapleural urokinase treatment of complicated parapneumonic effusion in pediatric patients: a randomised, prospective study. Int. J. Clin. Pract. 60:1225–1230.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, R. P., R. Huang, Y. Fan, and Y. Lin. 2001. Simultaneous detection of multiple cytokines from conditioned media and patient’s sera by an antibody-based protein array system. Anal. Biochem. 294:55– 62.

    Article  CAS  PubMed  Google Scholar 

  19. Light, R. W. 1995. A new classification of parapneumonic effusions and empyema. Chest 108:299–301.

    Article  CAS  PubMed  Google Scholar 

  20. Maskell, N. A., C. W. Davies, A. J. Nunn, E. L. Hedley, F. V. Gleeson, R. Miller, R. Gabe, G. L. Rees, T. E. Peto, M. A. Woodhead, D. J. Lane, J. H. Darbyshire, and R. J. Davies. 2005. U.K. Controlled trial of intrapleural streptokinase for pleural infection. N. Engl. J. Med. 352:865–874.

    Article  CAS  PubMed  Google Scholar 

  21. Alemán, C., J. Alegre, J. Monasterio, R. M. Segura, L. Armadans, A. Anglés, E. Varela, E. Ruiz, and T. Fernández de Sevilla. 2003. Association between inflammatory mediators and the fibrinolysis system in infectious pleural effusions. Clin. Sci. 105:601–607.

    Article  PubMed  Google Scholar 

  22. Lin, F. C., Y. C. Chen, F. J. Chen, and S. C. Chang. 2005. Cytokines and fibrinolytic enzymes in tuberculous and parapneumonic effusions. Clin. Immunol. 116:166–173.

    Article  CAS  PubMed  Google Scholar 

  23. Chiu, C. Y., K. S. Wong, J. L. Huang, M. H. Tasi, T. Y. Lin, and S. Y. Hsieh. 2008. Proinflammatory cytokines, fibrinolytic system enzymes, and biochemical indices in children with infectious parapneumonic effusions. Pediatr. Infect. Dis. J. 27:699–703.

    Article  PubMed  Google Scholar 

  24. Iglesias, D., J. Alegre, C. Alemán, E. Ruíz, T. Soriano, L. I. Armadans, R. M. Segura, A. Anglés, J. Monasterio, and T. F. de Sevilla. 2005. Metalloproteinases and tissue inhibitors of metalloproteinases in exudative pleural effusions. Eur. Respir. J. 25:104–109.

    Article  CAS  PubMed  Google Scholar 

  25. Hurewitz, A. N., S. Zucker, P. Mancuso, C. L. Wu, B. Dimassimo, R. M. Lysik, and D. Moutsiakis. 1992. Human pleural effusions are rich in matrix metalloproteinases. Chest 102:1808–1814.

    Article  CAS  PubMed  Google Scholar 

  26. Rothenberg, M. E., N. Zimmermann, A. Mishra, E. Brandt, L. A. Birkenberger, S. P. Hogan, and P. S. Foster. 1999. Chemokines and chemokines receptors: their role in allergic airway disease. J. Clin. Immunol. 19:250–265.

    Article  CAS  PubMed  Google Scholar 

  27. Kalomenidis, I., K. H. Mohamed, K. B. Lane, R. S. Peebles, R. Barnette, R. M. Rodriguez, and R. W. Light. 2003. Pleural fluid levels of vascular cell adhesion molecule-1 are elevated in eosinophilic pleural effusions. Chest 124:159–166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Li-Wen Chen for the laboratory assistance; and Dr. Robert Anderson for editing the English. We would also like to acknowledge the contributions of Drs. Chih-Ta Yao, and Ching-Chuan Liu for patient management and sample collection.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Financial Support

This study was supported by the Intramural Research Program of the National Cheng Kung University Hospital (NCKUH-9803036), and Taiwan National Science Council (NSC 98-2314-B-006-007-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Ming Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JN., Shin, JW., Chang, TY. et al. Decreased Proinflammatory Cytokines Production in Children with Complicated Parapneumonic Pleural Effusion after Intrapleural Fibrinolytic Treatment. Inflammation 32, 410–418 (2009). https://doi.org/10.1007/s10753-009-9150-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9150-2

KEY WORDS

Navigation