Skip to main content

Advertisement

Log in

A Role for Forkhead Box A1 in Acute Lung Injury

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Forkhead box protein A1 (FoxA1) is an evolutionarily conserved winged helix transcription factor with diverse regulatory functions. However, little is known about the role of FoxA1 in acute lung injury (ALI) and pulmonary cell injury. In this study, an in vivo model was employed whereby rats were administered an intravenous injection of oleic acid (OA, 0.1 ml/kg), and alveolar type II epithelial cells (AT-2 cells) injury was induced by hydrogen peroxide (H2O2) in vitro. OA injection resulted in lung injury and AT-2 cells apoptosis in vivo. OA injection and H2O2 upregulated FoxA1 mRNA and protein in lung tissue of the in vivo ALI model and in H2O2 challenged AT-2 cells. Overexpression of FoxA1 promoted apoptosis, whereas FoxA1 deficiency, induced by antisense oligonucleotides, decreased AT-2 cells apoptosis induced by H2O2, as shown by flow cytometry. These results suggest that FoxA1 may play an important role in ALI by promoting apoptosis of pulmonary epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goss, C. H., R. G. Brower, L. D. Hudson, and G. D. Rubenfeld. 2003. Incidence of acute lung injury in the United States. Crit. Care Med. 31:1607–1611. doi:10.1097/01.CCM.0000063475.65751.1D.

    Article  PubMed  Google Scholar 

  2. Mendez, J. L., and R. D. Hubmayr. 2005. New insights into the pathology of acute respiratory failure. Curr. Opin. Crit. Care. 11:29–36. doi:10.1097/00075198-200502000-00005.

    Article  PubMed  Google Scholar 

  3. Rubenfeld, G. D., E. Caldwell, E. Peabody, J. Weaver, D. P. Martin, M. Neff, et al. 2005. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353:1685–1693. doi:10.1056/NEJMoa050333.

    Article  PubMed  CAS  Google Scholar 

  4. Ware, L. B., and M. A. Matthay. 2000. The acute respiratory distress syndrome. N. Engl. J. Med. 342:1334–1349. doi:10.1056/NEJM200005043421806.

    Article  PubMed  CAS  Google Scholar 

  5. Crimi, E., and A. S. Slutsky. 2004. Inflammation and the acute respiratory distress syndrome. Best Pract. Res. Clin. Anaesthesiol. 18:477–492. doi:10.1016/j.bpa.2003.12.007.

    Article  PubMed  CAS  Google Scholar 

  6. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N. Engl. J. Med. 342:1301–1308. doi:10.1056/NEJM200005043421801

  7. Matthay, M. A., G. A. Zimmerman, C. Esmon, J. Bhattacharya, B. Coller, C. M. Doerschuk, et al. 2003. Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am. J. Respir. Crit. Care Med. 167:1027–1035. doi:10.1164/rccm.200208-966WS.

    Article  PubMed  Google Scholar 

  8. Mehta, D., J. Bhattacharya, M. A. Matthay, and A. B. Malik. 2004. Integrated control of lung fluid balance. Am. J. Physiol. Lung Cell. Mol. Physiol. 287:L1081–L1090. doi:10.1152/ajplung.00268.2004.

    Article  PubMed  CAS  Google Scholar 

  9. Slutsky, A. S., and L. D. Hudson. 2006. PEEP or no PEEP—lung recruitment may be the solution. N. Engl. J. Med. 354:1839–1841. doi:10.1056/NEJMe068045.

    Article  PubMed  CAS  Google Scholar 

  10. Tampo, Y., M. Tsukamoto, and M. Yonaha. 1999. Superoxide production from paraquat evoked by exogenous NADPH in pulmonary endothelial cells. Free Radic. Biol. Med. 27:588–595. doi:10.1016/S0891-5849(99)00110-0.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, H., A. S. Slutsky, and J. L. Vincent. 2000. Oxygen free radicals in ARDS, septic shock and organ dysfunction. Intensive Care Med. 26:474–476. doi:10.1007/s001340051185.

    Article  PubMed  CAS  Google Scholar 

  12. Yang, C., H. Moriuchi, J. Takase, Y. Ishitsuka, M. Irikura, and T. Irie. 2003. Oxidative stress in early stage of acute lung injury induced with oleic acid in guinea pigs. Biol. Pharm. Bull. 26:424–428. doi:10.1248/bpb.26.424.

    Article  PubMed  CAS  Google Scholar 

  13. Albertine, K. H., M. F. Soulier, Z. Wang, A. Ishizaka, S. Hashimoto, G. A. Zimmerman, et al. 2002. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Pathol. 161:1783–1796.

    PubMed  CAS  Google Scholar 

  14. Kitamura, Y., S. Hashimoto, N. Mizuta, A. Kobayashi, K. Kooguchi, I. Fujiwara, et al. 2001. Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am. J. Respir. Crit. Care Med. 163:762–769.

    PubMed  CAS  Google Scholar 

  15. Monaghan, A. P., K. H. Kaestner, E. Grau, and G. Schutz. 1993. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119:567–578.

    PubMed  CAS  Google Scholar 

  16. Ang, S. L., A. Wierda, D. Wong, K. A. Stevens, S. Cascio, J. Rossant, et al. 1993. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315.

    PubMed  CAS  Google Scholar 

  17. Sasaki, H., and B. L. Hogan. 1993. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118:47–59.

    PubMed  CAS  Google Scholar 

  18. Ruiz i Altaba, A., C. Cox, T. M. Jessell, and A. Klar. 1993. Ectopic neural expression of a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis. Proc. Natl. Acad. Sci. U. S. A. 90:8268–8272. doi:10.1073/pnas.90.17.8268.

    Article  PubMed  CAS  Google Scholar 

  19. Besnard, V., S. E. Wert, W. M. Hull, and J. A. Whitsett. 2004. Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr. Patterns 5:193–208. doi:10.1016/j.modgep.2004.08.006.

    Article  PubMed  CAS  Google Scholar 

  20. Kaestner, K. H., H. Hiemisch, B. Luckow, and G. Schutz. 1994. The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics 20:377–385. doi:10.1006/geno.1994.1191.

    Article  PubMed  CAS  Google Scholar 

  21. Lai, E., V. R. Prezioso, E. Smith, O. Litvin, R. H. Costa, and J. E. Darnell Jr. 1990. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 4:1427–1436. doi:10.1101/gad.4.8.1427.

    Article  PubMed  CAS  Google Scholar 

  22. Besnard, V., S. E. Wert, K. H. Kaestner, and J. A. Whitsett. 2005. Stage-specific regulation of respiratory epithelial cell differentiation by Foxa1. Am. J. Physiol. Lung Cell. Mol. Physiol. 289:L750–L759. doi:10.1152/ajplung.00151.2005.

    Article  PubMed  CAS  Google Scholar 

  23. Vazquez de Lara, L., C. Becerril, M. Montano, C. Ramos, V. Maldonado, J. Melendez, et al. 2000. Surfactant components modulate fibroblast apoptosis and type I collagen and collagenase-1 expression. Am. J. Physiol. Lung Cell. Mol. Physiol. 279:L950–L957.

    PubMed  CAS  Google Scholar 

  24. White, M. K., V. Baireddy, and D. S. Strayer. 2001. Natural protection from apoptosis by surfactant protein A in type II pneumocytes. Exp. Cell. Res. 263:183–192. doi:10.1006/excr.2000.5120.

    Article  PubMed  CAS  Google Scholar 

  25. Minoo, P., L. Hu, Y. Xing, N. L. Zhu, H. Chen, M. Li, et al. 2007. Physical and functional interactions between homeodomain NKX2.1 and winged helix/forkhead FOXA1 in lung epithelial cells. Mol. Cell. Biol. 27:2155–65. doi:10.1128/MCB.01133-06.

    Article  PubMed  CAS  Google Scholar 

  26. Nishina, K., K. Mikawa, Y. Takao, N. Maekawa, M. Shiga, and H. Obara. 1997. ONO-5046, an elastase inhibitor, attenuates endotoxin-induced acute lung injury in rabbits. Anesth. Analg. 84:1097–1103. doi:10.1097/00000539-199705000-00026.

    Article  PubMed  CAS  Google Scholar 

  27. Schittny, J. C., V. Djonov, A. Fine, and P. H. Burri. 1998. Programmed cell death contributes to postnatal lung development. Am. J. Respir. Cell. Mol. Biol. 18:786–793.

    PubMed  CAS  Google Scholar 

  28. Mulier, B., I. Rahman, T. Watchorn, K. Donaldson, W. MacNee, and P. K. Jeffery. 1998. Hydrogen peroxide-induced epithelial injury: the protective role of intracellular nonprotein thiols (NPSH). Eur. Respir. J. 11:384–91. doi:10.1183/09031936.98.11020384.

    Article  PubMed  CAS  Google Scholar 

  29. Roberts, J. R., G. D. Perkins, T. Fujisawa, K. A. Pettigrew, F. Gao, A. Ahmed, et al. 2007. Vascular endothelial growth factor promotes physical wound repair and is anti-apoptotic in primary distal lung epithelial and A549 cells. Crit. Care Med. 35:2164–2170. doi:10.1097/01.CCM.0000281451.73202.F6.

    Article  PubMed  CAS  Google Scholar 

  30. Lockshin, R. A. 2005. Programmed cell death: history and future of a concept. J. Soc. Biol. 199:169–173. doi:10.1051/jbio:2005017.

    Article  PubMed  CAS  Google Scholar 

  31. Iuchi, T., M. Akaike, T. Mitsui, Y. Ohshima, Y. Shintani, H. Azuma, et al. 2003. Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ. Res. 92:81–87. doi:10.1161/01.RES.0000050588.35034.3C.

    Article  PubMed  CAS  Google Scholar 

  32. Cox, G., J. Crossley, and Z. Xing. 1995. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am. J. Respir. Cell. Mol. Biol. 12:232–237.

    PubMed  CAS  Google Scholar 

  33. Haslett, C., J. S. Savill, M. K. Whyte, M. Stern, I. Dransfield, and L. C. Meagher. 1994. Granulocyte apoptosis and the control of inflammation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 345:327–333. doi:10.1098/rstb.1994.0113.

    Article  PubMed  CAS  Google Scholar 

  34. Matute-Bello, G., W. C. Liles, K. P. Steinberg, P. A. Kiener, S. Mongovin, E. Y. Chi, et al. 1999. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J. Immunol. 163:2217–2225.

    PubMed  CAS  Google Scholar 

  35. Hashimoto, S., A. Kobayashi, K. Kooguchi, Y. Kitamura, H. Onodera, and H. Nakajima. 2000. Upregulation of two death pathways of perforin/granzyme and FasL/Fas in septic acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 161:237–243.

    PubMed  CAS  Google Scholar 

  36. Wan, H., S. Dingle, Y. Xu, V. Besnard, K. H. Kaestner, S. L. Ang, et al. 2005. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J. Biol. Chem. 280:13809–13816. doi:10.1074/jbc.M414122200.

    Article  PubMed  CAS  Google Scholar 

  37. Whitsett, J. A., and Y. Matsuzaki. 2006. Transcriptional regulation of perinatal lung maturation. Pediatr. Clin. North Am. 53:873–887. viii. doi:10.1016/j.pcl.2006.08.009.

    Article  PubMed  Google Scholar 

  38. Park, K. S., J. M. Wells, A. M. Zorn, S. E. Wert, V. E. Laubach, L. G. Fernandez, et al. 2006. Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am. J. Respir. Cell. Mol. Biol. 34:151–157 doi:10.1165/rcmb.2005-0332OC.

    Article  PubMed  CAS  Google Scholar 

  39. Bardales, R. H., S. S. Xie, R. F. Schaefer, and S. M. Hsu. 1996. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am. J. Pathol. 149:845–852.

    PubMed  CAS  Google Scholar 

  40. Wang, H. C., C. T. Shun, S. M. Hsu, S. H. Kuo, K. T. Luh, and P. C. Yang. 2002. Fas/Fas ligand pathway is involved in the resolution of type II pneumocyte hyperplasia after acute lung injury: evidence from a rat model. Crit. Care Med. 30:1528–34. doi:10.1097/00003246-200207000-00022.

    Article  PubMed  CAS  Google Scholar 

  41. Tewari, M., L. T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D. R. Beidler, et al. 1995. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809. doi:10.1016/0092-8674(95)90541-3.

    Article  PubMed  CAS  Google Scholar 

  42. Matute-Bello, G., W. C. Liles, C. W. Frevert, M. Nakamura, K. Ballman, C. Vathanaprida, et al. 2001. Recombinant human Fas ligand induces alveolar epithelial cell apoptosis and lung injury in rabbits. Am. J. Physiol. Lung Cell. Mol. Physiol. 281:L328–L335.

    PubMed  CAS  Google Scholar 

  43. Matute-Bello, G., R. K. Winn, M. Jonas, E. Y. Chi, T. R. Martin, and W. C. Liles. 2001. Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am. J. Pathol. 158:153–161.

    PubMed  CAS  Google Scholar 

  44. Dobbs, L. G., R. Gonzalez, and M. C. Williams. 1986. An improved method for isolating type II cells in high yield and purity. Am. Rev. Respir. Dis. 134:141–145.

    PubMed  CAS  Google Scholar 

  45. Dobbs, L. G. 1990. Isolation and culture of alveolar type II cells. Am. J. Physiol. 258:L134–L147.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (grant no. 30330280), the National Nature Science Foundation of Hunan, China (grant no. 08JJ3030) and the Science Foundation Health Department of Hunan, China (grant no. 2007B090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhong Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, L., Zhang, B., Feng, Y. et al. A Role for Forkhead Box A1 in Acute Lung Injury. Inflammation 32, 322–332 (2009). https://doi.org/10.1007/s10753-009-9139-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9139-x

KEY WORDS

Navigation