Skip to main content
Log in

Sequential Expression of TLR4 and its Effects on the Myocardium of Rats with Myocardial Ischemia-Reperfusion Injury

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

This study was designed to explore the role of toll like receptor 4 (TLR4) in myocardial ischemia reperfusion injury (MI/RI). Male Sprague–Dawley rats were randomly divided into sham and IR groups (36/group). The rats were sacrificed at various times following reperfusion (0, 1/2, 1, 2, 4 and 8 h). The histopathological and ultrastructual changes in the myocardium were examined under a light microscope and a transmission electron microscope. The TLR4 protein and mRNA expression were detected by immunohistochemistry and real-time reverse transcription polymerase chain reaction, respectively. The levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the myocardium were measured by enzyme-linked immunosorbent assays. The injury to the myocardium was severe in the IR group, and there were no significant improvements in histopathology and ultrastructure of the myocardium during the first 8 h following reperfusion. Positive TLR4 protein staining was observed in both sham and IR groups. The TLR4 protein levels were significantly increased in the IR group, peaking at 1 h post reperfusion. Additionally, the TLR4 mRNA levels were also up-regulated in the IR group. At all time points, IR rats had significantly higher TNF-α and IL-6 levels than the sham rats (P < 0.05). The TLR4 mRNA expression positively correlated with the levels of TNF-α and IL-6 (r = 0.728 and 0.676, P < 0.01). Myocardial TLR4 expression was elevated at the early stage of myocardial ischemia reperfusion. Activated TLR4 may play a role in MI/RI by increasing TNF-α and IL-6 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ribichini, F., and W. Wijns. 2002. Acute myocardial infarction: reperfusion treatment. Heart 88(3):298–305 doi:10.1136/heart.88.3.298.

    Article  PubMed  Google Scholar 

  2. Braunwald, E.. 2002. Personal reflections on efforts to reduce ischemic myocardial damage. Cardiovasc. Res. 56(3):332–338 doi:10.1016/S0008-6363(02)00643-0.

    Article  PubMed  CAS  Google Scholar 

  3. Vakeva, A. P., A. Agah, S. A. Rollins, L. A. Matis, L. Li, and G. L. Stahl. 1998. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation 97(22):2259–2267.

    PubMed  CAS  Google Scholar 

  4. Ing, D. J., J. Zang, V. J. Dzau, K. A. Webster, and N. H. Bishopric. 1999. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ. Res. 84(1):21–33.

    PubMed  CAS  Google Scholar 

  5. Frangogiannis, N. G., C. W. Smith, and M. L. Entman. 2002. The inflammatory response in myocardial infarction. Cardiovasc. Res. 53(1):31–47 doi:10.1016/S0008-6363(01)00434-5.

    Article  PubMed  CAS  Google Scholar 

  6. Ding, J. W., J. Yang, S. Li, L. Li, and Y. Chen. 2006. Effects of adenosine preconditioning on cardiomyocyte apoptosis induced by reperfusion. Chin. J. Exp. Surg. 23(12):1565 in Chinese.

    CAS  Google Scholar 

  7. Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335–376 doi:10.1146/annurev.immunol.21.120601.141126.

    Article  PubMed  CAS  Google Scholar 

  8. Baumgarten, G., P. Knuefermann, N. Nozaki, N. Sivasubramanian, D. L. Mann, and J. G. Vallejo. 2001. In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J. Infect. Dis. 183(11):1617–1624 doi:10.1086/320712.

    Article  PubMed  CAS  Google Scholar 

  9. Oyama, J., C. Blais Jr, X. Liu, M. Pu, L. Kobzik, R. A. Kelly et al. 2004. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109(6):784–789 doi:10.1161/01.CIR.0000112575.66565.84.

    Article  PubMed  CAS  Google Scholar 

  10. Chong, A. J., A. Shimamoto, C. R. Hampton, H. Takayama, D. J. Spring, C. L. Rothnie et al. 2004. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J. Thorac. Cardiovasc. Surg. 128(2):170–179 doi:10.1016/j.jtcvs.2003.11.036.

    Article  PubMed  CAS  Google Scholar 

  11. Maulik, N., R. M. Engelman, J. A. Rousou, J. E. Flack 3rd, D. Deaton, and D. K. Das. 1999. Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation 100(Suppl19):II369–II375.

    PubMed  CAS  Google Scholar 

  12. Arpornmaeklong, P., N. Suwatwirote, P. Pripatnanont, and K. Oungbho. 2007. Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Int. J. Oral Maxillofac. Surg. 36(4):328–337 doi:10.1016/j.ijom.2006.09.023.

    Article  PubMed  CAS  Google Scholar 

  13. Marino, J. H., P. Cook, and K. S. Miller. 2003. Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR. J. Immunol. Methods 283(12):291–306 doi:10.1016/S0022-1759(03)00103-0.

    Article  PubMed  CAS  Google Scholar 

  14. Shibata, R., K. Sato, M. Kumada, Y. Izumiya, M. Sonoda, S. Kihara et al. 2007. Adiponectin accumulates in myocardial tissue that has been damaged by ischemia-reperfusion injury via leakage from the vascular compartment. Cardiovasc. Res. 74(3):471–479 doi:10.1016/j.cardiores.2007.02.010.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, X., W. Xie, P. Liu, M. Duan, Z. Jia, W. Li et al. 2006. Mechanism of the cardioprotection of rhEPO pretreatment on suppressing the inflammatory response in ischemia-reperfusion. Life Sci. 78(19):2255–2264 doi:10.1016/j.lfs.2005.09.053.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, D., G. Zhang, M. S. Hayden, M. B. Greenblatt, C. Bussey, R. A. Flavell et al. 2004. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303(5663):1522–1526 doi:10.1126/science.1094351.

    Article  PubMed  CAS  Google Scholar 

  17. Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088 doi:10.1126/science.282.5396.2085.

    Article  PubMed  CAS  Google Scholar 

  18. Chao, W., Y. Shen, X. Zhu, H. Zhao, M. Novikov, U. Schmidt et al. 2005. Lipopolysaccharide improves cardiomyocyte survival and function after serum deprivation. J. Biol. Chem. 280(23):21997–22005 doi:10.1074/jbc.M413676200.

    Article  PubMed  CAS  Google Scholar 

  19. Faxon, D. P., R. J. Gibbons, N. A. Chronos, P. A. Gurbel, and F. Sheehan. 2002. HALT-MI Investigators. The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J. Am. Coll. Cardiol. 40(7):1199–1204 doi:10.1016/S0735-1097(02)02136-8.

    Article  PubMed  CAS  Google Scholar 

  20. Frantz, S., L. Kobzik, Y. D. Kim, R. Fukazawa, R. Medzhitov, R. T. Lee et al. 1999. Toll4 (TLR4) expression in cardiacmyocytes in normal and failing myocardium. J. Clin. Invest. 104(3):271–280 doi:10.1172/JCI6709.

    Article  PubMed  CAS  Google Scholar 

  21. Otsui, K., N. Inoue, S. Kobayashi, R. Shiraki, T. Honjo, M. Takahashi et al. 2007. Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries. Heart Vessels 22(6):416–422 doi:10.1007/s00380-007-1001-1.

    Article  PubMed  Google Scholar 

  22. Zhai, Y., X. D. Shen, R. O’Connell, F. Gao, C. Lassman, R. W. Busuttil et al. 2004. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor3-depend ent MyD88-independent pathway. J. Immunol. 173(12):7115–7119.

    PubMed  CAS  Google Scholar 

  23. Boyd, J. H., S. Mathur, Y. Wang, R. M. Bateman, and K. R. Walley. 2006. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72(3):384–393 doi:10.1016/j.cardiores.2006.09.011.

    Article  PubMed  CAS  Google Scholar 

  24. D’Aiuto, F., M. Parkar, P. M. Brett, D. Ready, and M. S. Tonetti. 2004. Gene polymorphisms in pro-inflammatory cytokines are associated with systemic inflammation in patients with severe periodontal infections. Cytokine 28(1):29–34 doi:10.1016/j.cyto.2004.06.005.

    Article  PubMed  CAS  Google Scholar 

  25. Bhattacharyya, S., D. E. Brown, J. A. Brewer, S. K. Vogt, and L. J. Muglia. 2007. Macrophage glucocorticoid receptors regulate toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood 109(10):4313–4319 doi:10.1182/blood-2006-10-048215.

    Article  PubMed  CAS  Google Scholar 

  26. Sabroe, I., L. R. Prince, E. C. Jones, M. J. Horsburgh, S. J. Foster, S. N. Vogel et al. 2003. Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J. Immunol. 170(10):5268–5275.

    PubMed  CAS  Google Scholar 

  27. Matsuguchi, T., A. Masuda, K. Sugimoto, Y. Nagai, and Y. Yoshikai. 2003. JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation. EMBO J. 22(17):4455–4464 doi:10.1093/emboj/cdg438.

    Article  PubMed  CAS  Google Scholar 

  28. Ohashi, K., V. Burkart, S. Flohé, and H. Kolb. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164(2):558–561.

    PubMed  CAS  Google Scholar 

  29. Kirchhoff, S. R., S. Gupta, and A. A. Knowlton. 2002. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105(24):2899–2904 doi:10.1161/01.CIR.0000019403.35847.23.

    Article  PubMed  CAS  Google Scholar 

  30. Satoh, M., Y. Shimoda, T. Akatsu, Y. Ishikawa, Y. Minami, and M. Nakamura. 2006. Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction. Eur. J. Heart Fail. 8(8):810–815 doi:10.1016/j.ejheart.2006.03.004.

    Article  PubMed  CAS  Google Scholar 

  31. Stapel, H., S. C. Kim, S. Osterkamp, P. Knuefermann, A. Hoeft, R. Meyer et al. 2006. Toll-like receptor 4 modulates myocardial ischaemia-reperfusion injury: role of matrix metalloproteinases. Eur. J. Heart Fail. 8(7):665–672 doi:10.1016/j.ejheart.2006.03.005.

    Article  PubMed  CAS  Google Scholar 

  32. Medzhitov, R., P. Preston-Hurlburt, and C. A. Janeway Jr. 1997. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature 388(6640):394–397 doi:10.1038/41131.

    Article  PubMed  CAS  Google Scholar 

  33. Magder, S., J. Neculcea, V. Neculcea, and R. Sladek. 2006. Lipopolysaccharide and TNF-alpha produce very similar changes in gene expression in human endothelial cells. J Vasc Res. 43(5):447–461 doi:10.1159/000095162.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professors C. Zhang and L. Han of the Faculty of the Microbiology Department, Professor Y. Hu and Dr. B. Gao of the Department of Pathology of the First College of Clinical Medical Sciences, and the China Three Gorges University for their helpful discussions and suggestions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yang, J., Ding, Jw. et al. Sequential Expression of TLR4 and its Effects on the Myocardium of Rats with Myocardial Ischemia-Reperfusion Injury. Inflammation 31, 304–312 (2008). https://doi.org/10.1007/s10753-008-9079-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-008-9079-x

KEY WORDS

Navigation