Skip to main content

Advertisement

Log in

Co-cultures of Human Coronary Smooth Muscle Cells and Dimethyl Sulfoxide-differentiated HL60 Cells Upregulate ProMMP9 Activity and Promote Mobility—Modulation By Reactive Oxygen Species

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Vascular cells and leukocytes, involved in the development of atherosclerosis, produce cytokines and/or reactive oxygen species (ROS) and matrix metalloproteinases (MMPs) implicated in cell mobility. We investigated by co-culture experiments the effects of human coronary smooth muscle cells (HCSMC) on MMPs characteristics and mobility of neutrophil-like dimethyl sulfoxide-differentiated HL60 cells (≠HL60). The effects of superoxide dismutase (SOD) and catalase were also analyzed. All the studied MMP2 characteristics remained unchanged. HCSMC stimulated MMP9 protein level, activity and mobility of ≠HL60 cells and expressed and secreted a variety of cytokines implicated in atherosclerosis. SOD and catalase increased MMP9 expression, protein level and activity of ≠HL60, but migration of ≠HL60 cells was only decreased by catalase, demonstrating that ROS are more efficient in modulating MMP9 activity of ≠HL60 than their mobility. Finally, HCSMC being able to stimulate ≠HL60, their co-cultures may represent an in vitro approach to study cellular interactions occurring in vivo during atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ross, R. 1999. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  2. Hansson, G. K. 2001. Regulation of immune mechanisms in atherosclerosis. Ann. N. Y. Acad. Sci. 947:157–165.

    PubMed  CAS  Google Scholar 

  3. Libby, P. 2002. Inflammation in atherosclerosis. Nature 420:868–874.

    Article  PubMed  CAS  Google Scholar 

  4. Newby, A. C. 2005. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 85:1–31.

    Article  PubMed  CAS  Google Scholar 

  5. Kai, H., H. Ikeda, H. Yasukawa, M. Kai, Y. Seki, F. Kuwahara, T. Ueno, K. Sugi, and T. Imaizumi. 1998. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J. Am. Coll. Cardiol. 32:368–372.

    Article  PubMed  CAS  Google Scholar 

  6. Ferroni, P., S. Basili, F. Martini, C. M. Cardarello, F. Ceci, M. Di Franco, G. Bertazzoni, P. P. Gazzaniga, and C. Alessandri. 2003. Serum metalloproteinase 9 levels in patients with coronary artery disease: a novel marker of inflammation. J. Investig. Med. 51:295–300.

    Article  PubMed  CAS  Google Scholar 

  7. Bueb, J.-L., D. Zardini, E. Tschirhart, M. Gloesener, G. Gilson, and D. R. Wagner. 2003. Increased levels of Matrix Metalloproteinase-9 in patients with acute myocardial infarction: no correlation with C-Reactive Protein. J. Am. Coll. Cardiol. S265233.

  8. Robertson, L., L. Grip, L. Mattsson Hulten, J. Hulthe, and O. Wiklund. 2007. Release of protein as well as activity of MMP-9 from unstable atherosclerotic plaques during percutaneous coronary intervention. J. Intern. Med. 262:659–667.

    Article  PubMed  CAS  Google Scholar 

  9. Mauviel, A. 1993. Cytokine regulation of metalloproteinase gene expression. J. Cell. Biochem. 53:288–295.

    Article  PubMed  CAS  Google Scholar 

  10. Sato, H., T. Takino, T. Kinoshita, K. Imai, Y. Okada, W. G. Stetler Stevenson, and M. Seiki. 1996. Cell surface binding and activation of gelatinase A induced by expression of membrane-type-1-matrix metalloproteinase (MT1-MMP). FEBS Lett. 385:238–240.

    Article  PubMed  CAS  Google Scholar 

  11. Denhardt, D. T., B. Feng, D. R. Edwards, E. T. Cocuzzi, and U. M. Malyankar. 1993. Tissue inhibitor of metalloproteinases (TIMP, aka EPA): structure, control of expression and biological functions. Pharmacol. Ther. 59:329–341.

    Article  PubMed  CAS  Google Scholar 

  12. Chakrabarti, S., and K. D. Patel. 2005. Regulation of matrix metalloproteinase-9 release from IL-8-stimulated human neutrophils. J. Leukoc. Biol. 78:279–288.

    Article  PubMed  CAS  Google Scholar 

  13. Rajagopalan, S., X. P. Meng, S. Ramasamy, D. G. Harrison, and Z. S. Galis. 1996. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98:2572–2579.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, E., A. J. Grodzinsky, P. Libby, S. K. Clinton, M. W. Lark, and R. T. Lee. 1995. Human vascular smooth muscle cell-monocyte interactions and metalloproteinase secretion in culture. Arterioscler. Thromb. Vasc. Biol. 15:2284–2289.

    PubMed  CAS  Google Scholar 

  15. Vanderlaan, P. A., and C. A. Reardon. 2005. Thematic review series: the immune system and atherogenesis. The unusual suspects: an overview of the minor leukocyte populations in atherosclerosis. J. Lipid Res. 46:829–838.

    Article  PubMed  CAS  Google Scholar 

  16. Naruko, T., M. Ueda, K. Haze, A. C. van der Wal, C. M. van der Loos, A. Itoh, R. Komatsu, Y. Ikura, M. Ogami, Y. Shimada, S. Ehara, M. Yoshiyama, K. Takeuchi, J. Yoshikawa, and A. E. Becker. 2002. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 106:2894–2900.

    Article  PubMed  Google Scholar 

  17. Collins, S. J. 1987. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 70:1233–1244.

    PubMed  CAS  Google Scholar 

  18. Bréchard, S., J.-L. Bueb, and E. J. Tschirhart. 2005. Interleukin-8 primes oxidative burst in neutrophil-like HL-60 through changes in cytosolic calcium. Cell Calcium 37:531–540.

    Article  PubMed  Google Scholar 

  19. Bréchard, S., A. Brunello, J.-L. Bueb, and E. J. Tschirhart. 2006. Modulation by cADPr of Ca2+ mobilization and oxidative response in dimethylsulfoxide- or retinoic acid-differentiated HL-60 cells. Biochim. Biophys. Acta. 1763:129–136.

    Article  PubMed  Google Scholar 

  20. Valentin, F., J.-L. Bueb, C. Capdeville-Atkinson, and E. Tschirhart. 2001. Rac-1-mediated O2 - secretion requires Ca2+ influx in neutrophil-like HL-60 cells. Cell Calcium 29:409–415.

    Article  PubMed  CAS  Google Scholar 

  21. Galis, Z. S., M. Muszynski, G. K. Sukhova, E. Simon-Morrissey, E. N. Unemori, M. W. Lark, E. Amento, and P. Libby. 1994. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ. Res. 75:181–189.

    PubMed  CAS  Google Scholar 

  22. Ries, C., H. Kolb, and P. E. Petrides. 1994. Regulation of 92-kD gelatinase release in HL-60 leukemia cells: tumor necrosis factor-alpha as an autocrine stimulus for basal- and phorbol ester-induced secretion. Blood 83:3638–3646.

    PubMed  CAS  Google Scholar 

  23. Sawa, Y., H. Ichikawa, K. Kagisaki, T. Ohata, and H. Matsuda. 1998. Interleukin-6 derived from hypoxic myocytes promotes neutrophil-mediated reperfusion injury in myocardium. J. Thorac. Cardiovasc. Surg. 116:511–517.

    Article  PubMed  CAS  Google Scholar 

  24. Ridker, P. M., N. Rifai, M. J. Stampfer, and C. H. Hennekens. 2000. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101:1767–1772.

    PubMed  CAS  Google Scholar 

  25. Schonbeck, U., and P. Libby. 2001. CD40 signaling and plaque instability. Circ. Res. 89:1092–1103.

    Article  PubMed  CAS  Google Scholar 

  26. Dreier, R., S. Wallace, S. Fuchs, P. Bruckner, and S. Grassel. 2001. Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). J. Cell. Sci. 114:3813–3822.

    PubMed  CAS  Google Scholar 

  27. Christopherson, K. , and R. Hromas. 2001. Chemokine regulation of normal and pathologic immune responses. Stem Cells 19:388–396.

    Article  PubMed  CAS  Google Scholar 

  28. Miller, L. S., E. M. Pietras, L. H. Uricchio, K. Hirano, S. Rao, H. Lin, R. M. O’Connell, Y. Iwakura, A. L. Cheung, G. Cheng, and R. L. Modlin. 2007. Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo. J. Immunol. 179:6933–6942.

    PubMed  CAS  Google Scholar 

  29. Colditz, I., R. Zwahlen, B. Dewald, and M. Baggiolini. 1989. In vivo inflammatory activity of neutrophil-activating factor, a novel chemotactic peptide derived from human monocytes. Am. J. Pathol. 134:755–760.

    PubMed  CAS  Google Scholar 

  30. Gouwy, M., S. Struyf, J. Catusse, P. Proost, and J. Van Damme. 2004. Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J. Leukoc. Biol. 76:185–194.

    Article  PubMed  CAS  Google Scholar 

  31. Siwik, D. A., P. J. Pagano, and W. S. Colucci. 2001. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 280:C53–C60.

    PubMed  CAS  Google Scholar 

  32. Oishi, K., and K. Machida. 1997. Inhibition of neutrophil apoptosis by antioxidants in culture medium. Scand. J. Immunol. 45:21–27.

    Article  PubMed  CAS  Google Scholar 

  33. Ali, M. H., S. A. Schlidt, N. S. Chandel, K. L. Hynes, P. T. Schumacker, and B. L. Gewertz. 1999. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am. J. Physiol. 277:L1057–L1065.

    PubMed  CAS  Google Scholar 

  34. Hashimoto, S., Y. Gon, K. Matsumoto, I. Takeshita, and T. Horie. 2001. N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells. Br. J. Pharmacol. 132:270–276.

    Article  PubMed  CAS  Google Scholar 

  35. Van Wart, H. E., and H. Birkedal-Hansen. 1990. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. U. S. A. 87:5578–5582.

    Article  PubMed  Google Scholar 

  36. Nishio, E., and Y. Watanabe. 1997. The involvement of reactive oxygen species and arachidonic acid in alpha 1-adrenoceptor-induced smooth muscle cell proliferation and migration. Br. J. Pharmacol. 121:665–670.

    Article  PubMed  CAS  Google Scholar 

  37. Shim, H., E. Shim, H. Lee, J. Hahn, D. Kang, Y. S. Lee, and D. Jeoung. 2006. CAGE, a novel cancer/testis antigen gene, promotes cell motility by activation ERK and p38 MAPK and downregulating ROS. Mol. Cells 21:367–375.

    PubMed  CAS  Google Scholar 

  38. Lardot, C., F. Broeckaert, D. Lison, J. P. Buchet, and R. Lauwerys. 1996. Exogenous catalase may potentiate oxidant-mediated lung injury in the female Sprague–Dawley rat. J. Toxicol. Environ. Health 47:509–522.

    Article  PubMed  CAS  Google Scholar 

  39. Simonson, S. G., K. E. Welty-Wolf, Y. C. Huang, D. E. Taylor, S. P. Kantrow, M. S. Carraway, J. D. Crapo, and C. A. Piantadosi. 1997. Aerosolized manganese SOD decreases hyperoxic pulmonary injury in primates. I. Physiology and biochemistry. J. Appl. Physiol. 83:550–558.

    PubMed  CAS  Google Scholar 

  40. Raineri, I., E. J. Carlson, R. Gacayan, S. Carra, T. D. Oberley, T. T. Huang, and C. J. Epstein. 2001. Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility. Free Radic. Biol. Med. 31:1018–1030.

    Article  PubMed  CAS  Google Scholar 

  41. Rando, T. A., R. S. Crowley, E. J. Carlson, C. J. Epstein, and P. K. Mohapatra. 1998. Overexpression of copper/zinc superoxide dismutase: a novel cause of murine muscular dystrophy. Ann. Neurol. 44:381–386.

    Article  PubMed  CAS  Google Scholar 

  42. Chen, X., H. Liang, H. Van Remmen, J. Vijg, and A. Richardson. 2004. Catalase transgenic mice: characterization and sensitivity to oxidative stress. Arch. Biochem. Biophys. 422:197–210.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Université du Luxembourg and by a research grant (BFR 03/072) from the Ministère de la Culture, de la Recherche et de l’Enseignement Supérieur. We thank Alexandre Salsmann for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Bueb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, Y., Melchior, C., Tschirhart, E. et al. Co-cultures of Human Coronary Smooth Muscle Cells and Dimethyl Sulfoxide-differentiated HL60 Cells Upregulate ProMMP9 Activity and Promote Mobility—Modulation By Reactive Oxygen Species. Inflammation 31, 287–298 (2008). https://doi.org/10.1007/s10753-008-9077-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-008-9077-z

KEY WORDS

Navigation