Skip to main content

Advertisement

Log in

Etoposide Attenuates Zymosan-Induced Shock in Mice

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Zymosan-induced generalized inflammation is a convenient model to study the process of acute and chronic inflammatory processes resulting in multiple organ dysfunction syndrome. Macrophages as a source of many pro-inflammatory mediators are the major players in shock and further organ failure. Etoposide is a cytostatic drug known to reduce macrophages and monocytes in blood circulation. In the present study we have investigated whether the ability of etoposide to diminish macrophage number would have an impact on the course of zymosan-induced shock. The drug injected at a dose of 10 mg/kg 1 day before zymosan, significantly reduced the mortality and decreased the organ toxicity in Balb/c mice. Simultaneously, an inhibition of TNF-α production by alveolar and peritoneal macrophages was observed. Etoposide administered into mice with severe combined immunodeficiency (SCID) did not change the survival rate and had a little influence on organ toxicity. Our findings suggest that the beneficial action of etoposide might be attributed to the reduction of macrophages and alteration of their functions. Its effect depends on the presence of functional T and B lymphocytes. The results deserve further investigation of etoposide as a perspective therapeutic tool for inhibiting the excessive inflammatory response and to be helpful for revealing mechanisms of shock development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deitch, E. A. 1998. Animal models of sepsis and shock: a review and lessons learned. Shock 9:1–11.

    Article  PubMed  CAS  Google Scholar 

  2. Carpati, C. M., M. E. Astiz, and E. C. Rackow. 1999. Mechanisms and management of myocardial dysfunction in septic shock. Crit. Care. Med. 27:231–232.

    Article  PubMed  CAS  Google Scholar 

  3. Karima, R., S. Matsumoto, H. Higashi, and K. Matsushima. 1999. The molecular pathogenesis of endotoxic shock and organ failure. Mol. Med. Today 5:123–132.

    Article  PubMed  CAS  Google Scholar 

  4. Davies, M. G., and P. O. Hagen. 1997. Systemic inflammatory response syndrome. Br. J. Surg. 84:920–935.

    Article  PubMed  CAS  Google Scholar 

  5. Nelson, S. 1999. A question of balance. Am. J. Respir. Crit. Care Med. 159:1365–1367.

    PubMed  CAS  Google Scholar 

  6. Goris, R. J., W. K. Boekholtz, I. P. van Bebber, J. K. Nuytinck, and P. H. Schillings. 1986. Multiple-organ failure and sepsis without bacteria. An experimental model. Arch. Surg. 121:897–901.

    PubMed  CAS  Google Scholar 

  7. Underhill, D. M. 2003. Macrophage recognition of zymosan particles. J. Endotoxin. Res. 9:176–180.

    PubMed  CAS  Google Scholar 

  8. Meng, G., A. Grabiec, M. Rutz, J. Metzger, P. B. Luppa, H. Wagner, S. Bauer, and C. J. Kirschning. 2005. Murine TLR2 expression analysis and systemic antagonism by usage of specific monoclonal antibodies. Immunol. Lett. 98:200–207.

    Article  PubMed  CAS  Google Scholar 

  9. Sfeir, T., D. C. Saha, M. Astiz, and E. C. Rackow. 2001. Role of interleukin-10 in monocyte hyporesponsiveness associated with septic shock. Crit. Care Med. 29:129–133.

    Article  PubMed  CAS  Google Scholar 

  10. von Asmuth, E. J., J. G. Maessen, C. J. van der Linden, and W. A. Buurman. 1990. Tumour necrosis factor alpha (TNF-alpha) and interleukin 6 in a zymosan-induced shock model. Scand. J. Immunol. 32:313–319.

    Article  Google Scholar 

  11. Aldridge, A. J. 2002. Role of the neutrophil in septic shock and the adult respiratory distress syndrome. Eur. J. Surg. 168:204–214.

    Article  PubMed  CAS  Google Scholar 

  12. Baker, C. C., and M. D. Huynh. 1995. Sepsis in the critically ill patient. Curr. Probl. Surg. 32:1013–1083.

    Article  PubMed  CAS  Google Scholar 

  13. Aisner, J., and E. J. Lee. 1991. Etoposide. Current and future status. Cancer 67:215–219.

    Article  PubMed  CAS  Google Scholar 

  14. Hande, K. R. 1998. Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer 34:1514–1521.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson, D. H., J. D. Hainsworth, K. R. Hande, and F. A. Greco. 1991. Current status of etoposide in the management of small cell lung cancer. Cancer 67:231–244.

    Article  PubMed  CAS  Google Scholar 

  16. Beutler, B., and A. Cerami. 1989. The biology of cachectin/TNF-a primary mediator of the host response. Annu. Rev. Immunol. 7:625–655.

    PubMed  CAS  Google Scholar 

  17. Blackwell, T. S., and J. W. Christman. 1996. Sepsis and cytokines: current status. Br. J. Anaesth. 77:110–117.

    PubMed  CAS  Google Scholar 

  18. Burdon, D., T. Tiedje, K. Pfeffer, E. Vollmer, and P. Zabel. 2000. The role of tumor necrosis factor in the development of multiple organ failure in a murine model. Crit. Care Med. 28:1962–1967.

    Article  PubMed  CAS  Google Scholar 

  19. Calame, W., A. E. Douwes-Idema, M. T. van den Barselaar, R. van Furth, and H. Mattie. 1994. Influence of cytostatic agents on the pulmonary defence of mice infected with Klebsiella pneumoniae and on the efficacy of treatment with ceftriaxone. J. Infect. 29:53–66.

    Article  PubMed  CAS  Google Scholar 

  20. Calame, W., R. van der Waals, H. Mattie, and R. van Furth. 1989. Influence of etoposide and cyclophosphamide on the efficacy of cloxacillin and erythromycin in an experimental staphylococcal infection. Antimicrob. Agents Chemother. 33:980–982.

    PubMed  CAS  Google Scholar 

  21. Verdrengh, M., O. Isaksson, and A. Tarkowski. 2005. Topoisomerase II inhibitors, irrespective of their chemical composition, ameliorate experimental arthritis. Rheumatology (Oxford) 44:183–186.

    Article  CAS  Google Scholar 

  22. Verdrengh, M., and A. Tarkowski. 2003. Impact of topoisomerase II inhibition on cytokine and chemokine production. Inflamm. Res. 52:148–153.

    Article  PubMed  CAS  Google Scholar 

  23. Nieuwenhuijzen, G. A., M. F. Knapen, T. Hendriks, N. van Rooijen, and R. J. Goris. 1997. Elimination of various subpopulations of macrophages and the development of multiple-organ dysfunction syndrome in mice. Arch. Surg. 132:533–539.

    PubMed  CAS  Google Scholar 

  24. Jansen, M. J., T. Hendriks, M. T. Vogels, J. W. van der Meer, and R. J. Goris. 1996. Inflammatory cytokines in an experimental model for the multiple organ dysfunction syndrome. Crit. Care Med. 24:1196–1202.

    Article  PubMed  CAS  Google Scholar 

  25. Volman, T. J., R. J. Goris, M. van der Jagt, F. A. van de Loo, and T. Hendriks. 2002. Organ damage in zymosan-induced multiple organ dysfunction syndrome in mice is not mediated by inducible nitric oxide synthase. Crit. Care Med. 30:1553–1559.

    Article  PubMed  CAS  Google Scholar 

  26. Seiter, K. 2005. Toxicity of the topoisomerase II inhibitors. Expert. Opin. Drug Saf. 4:219–234.

    Article  PubMed  CAS  Google Scholar 

  27. Goldmann, O., G. S. Chhatwal, E. Medina. 2005. Contribution of natural killer cells to the pathogenesis of septic shock induced by Streptococcus pyogenes in mice. J. Infect. Dis. 191:1280–1286.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the fellowship grant MU 501/02.09.2005 to National Science Fund, Ministry of Education and Science, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dimitrova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remichkova, M., Yordanov, M. & Dimitrova, P. Etoposide Attenuates Zymosan-Induced Shock in Mice. Inflammation 31, 57–64 (2008). https://doi.org/10.1007/s10753-007-9049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-007-9049-8

Key words

Navigation