Skip to main content

Role of Sandhika: A Polyherbal Formulation on MC3T3-E1 Osteoblast-like Cells

Abstract

Sandhika is a polyherbal formulation, (water soluble fraction of Commiphora mukul, Boswellia serrata, Semecarpus anacardium and Strychnos nux vomica), which has been in clinical use in India for last 20 years. Its modified formulation BHUx has shown specific inhibition of cyclooxygenase (COX)-2 and lipoxygenase (LOX)-15 and has prevented diet-induced atherosclerosis in rabbits. In order to explore the possibility of the use of Sandhika for the management of osteoporosis, we have examined its influence on MC3T3-E1 osteoblast-like cells in presence of lipopolysaccharide (1 μg/ml) in terms of calcium nodule formation and alkaline phosphatase activity. MC3T3-E1 osteoblast-like cells (80% confluence in 6-well plates) were treated with water extract of Sandhika, for 10 days, in the concentration range of 0.5 to 16 mg/ml final concentration, in presence of LPS. Media was changed on every third day and culture supernatant was collected after every change to assess the alkaline phosphatase activity and on the tenth day, cells were washed and stained with “Alizarin S” for visualization of calcium nodules by using Meta Morph software (Universal Imaging, Downingtown, PA). The results showed significant enhancement in calcium nodule formation in the dose dependent manner up to 2 mg/ml, followed by gradual decrease at higher concentrations. This change was accompanied with the increase in the alkaline phosphatase activity in these plates, indicating a potential anabolic effect of this polyherbal formulation on osteoblast-like cells under inflammatory conditions induced by LPS.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Arjmandi, B. H. 2001. The role of phytoestrogens in the prevention and treatment of osteoporosis in ovarian hormone deficiency. J. Am. Coll. Nutr. 20(5 Suppl):398S–402S (Oct).

    PubMed  CAS  Google Scholar 

  2. 2.

    Fujiwara, S. 2004. Epidemiology of osteoporosis and fracture. Clin. Calcium 14(11):1671–1676.

    Google Scholar 

  3. 3.

    Clarke, M. S. 2004. The effects of exercise on skeletal muscle in the aged. J. Musculoskelet. Neuronal. Interact. 4(2):175–178.

    PubMed  CAS  Google Scholar 

  4. 4.

    Frost, H. M. (2004). Coming changes in accepted wisdom about “osteoporosis”. J. Musculoskelet. Neuronal. Interact. 4(1):78–85.

    PubMed  CAS  Google Scholar 

  5. 5.

    Christiansen, C. 1992. Prevention and treatment of osteoporosis: a review of current modalities. Bone 13(Suppl 1):S35–S39.

    PubMed  Article  Google Scholar 

  6. 6.

    Christiansen, C., and R. Lindsay. 1990. Estrogens, bone loss and preservation. Osteoporos. Int. 1(1):7–13.

    Article  CAS  Google Scholar 

  7. 7.

    Nordstrom, A., C. Karlsson, F. Nyquist, T. Olsson, P. Nordstrom, and M. Karlsson. 2005. Bone loss and fracture risk after reduced physical activity. J. Bone Miner. Res. 20(2):202–207 2004.

    PubMed  Article  Google Scholar 

  8. 8.

    Hurley, M. M., S. K. Lee, L. G. Raisz, P. Bernecker, J. Lorenzo. 1998. Basic fibroblast growth factor induces osteoclast formation in murine bone marrow cultures. Bone 22(4):309–316.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Fromigue, O., D. Modrowski, and P. J. Marie. 2004. Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta. Curr. Pharm. Des. 10(21):2593–2603.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Koike, M., H. Shimokawa, Z. Kanno, K. Ohya, and K. Soma. 2005. Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J. Bone Miner. Metab. 23(3):219–225.

    PubMed  Article  Google Scholar 

  11. 11.

    Kennedy, A. M., K. L. Shogren, M. Zhang, R. T. Turner, T. C. Spelsberg, and A. Maran. 2005. 17beta-estradiol-dependent activation of signal transducer and activator of transcription-1 in human fetal osteoblasts is dependent on Src kinase activity. Endocrinology 146(1):201–207.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Ivaska, K. K., S. M. Kakonen, P. Gerdhem, K. J. Obrant, K. Pettersson, and H. K. Vaananen. 2005. Urinary osteocalcin as a marker of bone metabolism. Clin. Chem. 51(3):618–628.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Deckers, M. M., R. L. van Bezooijen, G. van der Horst, J. Hoogendam, C. van Der Bent, S. E. Papapoulos, and C. W. Lowik. 2002. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143(4):1545–1553.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Lee, K. H., and E. M. Choi. 2005. Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells. Biol. Pharm. Bull. 28(10):1948–1953.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Gruber, R., W. Graninger, K. Bobacz, G. Watzek, and L. Erlacher. 2003. BMP-6-induced osteogenic differentiation of mesenchymal cell lines is not modulated by sex steroids and resveratrol. Cytokine 23(4–5):133–137 (21 Sep 7).

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Kubota, K., C. Sakikawa, M. Katsumata, T. Nakamura, and K. Wakabayashi. (2002). Platelet-derived growth factor BB secreted from osteoclasts acts as an osteoblastogenesis inhibitory factor. J. Bone Miner. Res. 17(2):257–265.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Furumatsu, T., Z. N. Shen, A. Kawai, K. Nishida, H. Manabe, T. Oohashi, H. Inoue, and Y. Ninomiya. 2003. Vascular endothelial growth factor principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis. J. Biochem. (Tokyo) 133(5):633–639.

    CAS  Google Scholar 

  18. 18.

    Suda, K., N. Udagawa, N. Sato, M. Takami, K. Itoh, J. T. Woo, N. Takahashi, and K. Nagai. 2004. Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide-induced osteoclast formation. J. Immunol. 172(4):2504–2510.

    PubMed  CAS  Google Scholar 

  19. 19.

    Hayashi, S., T. Yamada, M. Tsuneto, T. Yamane, M. Takahashi, L. D. Shultz, and H. Yamazaki. 2003. Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha. J. Immunol. 171(10):5130–5139.

    PubMed  CAS  Google Scholar 

  20. 20.

    Miyaura, C., M. Inada, C. Matsumoto, T. Ohshiba, N. Uozumi, T. Shimizu, and A. Ito. 2003. An essential role of cytosolic phospholipase A2alpha in prostaglandin E2-mediated bone resorption associated with inflammation. J. Exp. Med. 197(10):1303–1310.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kondo, A., Y. Koshihara, and A. Togari. 2001. Signal transduction system for interleukin-6 synthesis stimulated by lipopolysaccharide in human osteoblasts. J. Interferon Cytokine Res. 21(11):943–950 Nov.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Zou, W., and Z. Bar-Shavit. 2002. Dual modulation of osteoclast differentiation by lipopolysaccharide. Bone Miner. Res. 17(7):1211–1218.

    Article  CAS  Google Scholar 

  23. 23.

    Schneeweis, L. A., Willard, D., and Milla, M. E. 2005. Functional dissection of osteoprotegerin and its interaction with RANK-L. J. Biol. Chem. 280(50):41155–41164.

    Google Scholar 

  24. 24.

    Lin, S. K., S. H. Kok, M. Y. Kuo, M. S. Lee, C. C. Wang, W. H. Lan, M. Hsiao, S. R. Goldring, and C. Y. Hong. 2003. Nitric oxide promotes infectious bone resorption by enhancing cytokine-stimulated interstitial collagenase synthesis in osteoblasts. J. Bone Miner. Res. 18(1):39–46.

    PubMed  Article  Google Scholar 

  25. 25.

    Takahashi, K., J. Kawagoe, M. Ohmichi, and H. Kurachi. 2004. [Hormone replacement therapy and osteoporosis. Clin. Calcium 14(3):436–441.

    PubMed  Google Scholar 

  26. 26.

    Rapuri, P. B., J. C. Gallagher, and G. Haynatzki. 2004. Endogenous levels of serum estradiol and sex hormone binding globulin determine bone mineral density, bone remodeling, the rate of bone loss, and response to treatment with estrogen in elderly women. J. Clin. Endocrinol. Metab. 89(10):4954–4962.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Miller, K. K., K. A. Grieco, J. Mulder, S. Grinspoon, D. Mickley, R. Yehezkel, D. B. Herzog, and A. Klibanski. 2004. Effects of risedronate on bone density in anorexia nervosa. J. Clin. Endocrinol. Metab. 89(8):3903–3906.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Notoya, M., Y. Tsukamoto, H. Nishimura, J. T. Woo, K. Nagai, I. S. Lee, and H. Hagiwara. 2004. Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur. J. Pharmacol. 485(1–3):89–96.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Arjmandi, B. H., and B. J. Smith. 2002. Soy isoflavones' osteoprotective role in postmenopausal women: mechanism of action. J. Nutr. Biochem 13(3):130–137.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Na, H. J., S. J. Lee, Y. C. Kang, Y. L. Cho, W. D. Nam, P. K. Kim, K. S. Ha, H. T. Chung, H. Lee, Y. G. Kwon, J. S. Koh, and Y. M. Kim. 2004. Inhibition of farnesyltransferase prevents collagen-induced arthritis by down-regulation of inflammatory gene expression through suppression of p21(ras)-dependent NF-kappaB activation. J. Immunol. 173(2):1276–1283.

    PubMed  CAS  Google Scholar 

  31. 31.

    Lin, S. K., S. H. Kok, M. Y. Kuo, M. S. Lee, C. C. Wang, W. H. Lan, M. Hsiao, S. R. Goldring, and C. Y. Hong. 2003. Nitric oxide promotes infectious bone resorption by enhancing cytokine-stimulated interstitial collagenase synthesis in osteoblasts. J. Bone. Miner. Res. 18(1):39–46.

    PubMed  Article  Google Scholar 

  32. 32.

    Chae, H. J., S. C. Kim, S. W. Chae, N. H. An, H. H. Kim, Z. H. Lee, and H. R. Kim. 2001. Blockade of the p38 mitogen-activated protein kinase pathway inhibits inducible nitric oxide synthase and interleukin-6 expression in MC3T3-E1E-1 osteoblasts. Pharmacol. Res. 43(3):275–283.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Tripathi, Y. B., B. K. Singh, R. S. Pandey, and M. Kumar. 2005. BHUx: a patent polyherbal formulation to prevent atherosclerosis. Evid. Based Complement Alternat. Med. 2(2):217–221.

    PubMed  Article  Google Scholar 

  34. 34.

    Tripathi, Y. B., M. M. Reddy, R. S. Pandey, J. Subhashini, O. P. Tiwari, B. K. Singh, and P. Reddanna. 2004. Anti-inflammatory properties of BHUx, a polyherbal formulation to prevent atherosclerosis. Inflammopharmacology 12(2):131–152.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Chaurasia, S., P. Tripathi, and Y. B. Tripathi. 1995. Antioxidant and anti-inflammatory property of Sandhika: a compound herbal drug. Indian J. Exp. Biol. 33(6):428–432.

    PubMed  CAS  Google Scholar 

  36. 36.

    Ishida, K., and M. Yamaguchi. 2004. Role of albumin in osteoblastic cells: enhancement of cell proliferation and suppression of alkaline phosphatase activity. Int. J. Mol. Med. 14(6):1077–1081.

    PubMed  CAS  Google Scholar 

  37. 37.

    Barbara, A., P. Delannoy, B. G. Denis, and P. J. Marie. 2004 Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 53(4):532–537 (Apr).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Ross, R. 1999. Atherosclerosis—an inflammatory disease. New Engl. J. Med. 340(2):115–126.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Pandey, G. S., and K. C. Chunekar. 1967. Bhavaprakash Bhava prakash nighantu (Chaukhambha Vidya Bhawan, Varanasi). 139–141.

  40. 40.

    Tripathi, Y. B., P. Tripathi, O. P. Malhotra, and S. N. Tripathi. 1988. Thyroid stimulatory action of (Z) guggulsterone: mechanism of action. Planta Med. 54(4):271–276.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Chang, H., T. Y. Jin, W. F. Jin, S. Z. Gu, and Y. F. Zhou. 2003. Modulation of isoflavones on bone-nodule formation in rat calvaria osteoblasts in vitro. Biomed. Environ. Sci. 16(1):83–89.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Abeyama, K., K. Kawano, T. Nakajima, I. Takasaki, I. Kitajima, and I. Maruyama. 1995. Interleukin 6 mediated differentiation and rescue of cell redox in PC12 cells exposed to ionizing radiation. FEBS Lett. 364(3):298–300.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Kanno, S., S. Hirano, and F. Kayama. 2004. Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells. Toxicology 196(1–2):137–145.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Yoshida, H., T. Teramoto, K. Ikeda, and Y. Yamori. 2001. Glycitein effect on suppressing the proliferation and stimulating the differentiation of osteoblastic MC3T3-E1 cells. Biosci. Biotechnol. Biochem. 65(5):1211–1213.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Yazawa, H., B. Zimmermann, Y. Asami, and J. P. Bernimoulin. 2005. Simvastatin promotes cell metabolism, proliferation, and osteoblastic differentiation in human periodontal ligament cells. J. Periodontol. 76(2):295–302.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Tripathi, Y. B., and R. S. Pandey. 2004. Semecarpus anacardium L, nuts inhibit lipopolysaccharide induced NO production in rat macrophages along with its hypolipidemic property. Indian J. Exp. Biol. 42(4):432–436.

    PubMed  CAS  Google Scholar 

  47. 47.

    Yamashita, T., S. Yang, and N. Udagawa. 2005. Osteoclastogenesis through TLR/NOD signaling. Nippon Rinsho 63(9):1547–1552.

    PubMed  Google Scholar 

  48. 48.

    Ammon, H. P., H. Safayhi, T. Mack, and J. Sabieraj. 1993. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J. Ethnopharmacol. 38(2–3):113–119.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the administration of the Department of Nutritional Sciences, OSU for extending all the experimental and administrative support for conducting this experiment and to the BHU administration for sanctioning me leave to take up this assignment at OSU. Financial assistance from the project grant of Prof. Arjmandi is acknowledged. We are thankful to Surya Pharmaceuticals, Varanasi for providing Sandhika as a gift.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yamini B. Tripathi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tripathi, Y.B., Tripathi, P., Korlagunta, K. et al. Role of Sandhika: A Polyherbal Formulation on MC3T3-E1 Osteoblast-like Cells. Inflammation 31, 1 (2008). https://doi.org/10.1007/s10753-007-9044-0

Download citation

Key words

  • osteoporosis
  • polyherbal
  • inflammation
  • MC3T3-E1 osteoblast-like cells
  • Sandhika
  • calcium nodule