Skip to main content
Log in

Measurement of the sub-nanometer vibration amplitudes using 57Fe synchrotron Mössbauer source

  • Conference Proceeding
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

The sub-nanometer amplitudes of the samples vibrated with high frequencies were measured by 57Fe Mössbauer spectroscopy using a nuclear Bragg monochromator and focusing optics. The Mössbauer spectra of the vibrated single-line absorber showed comb-like absorption peaks, and the amplitudes of the absorbers were determined by the sideband intensities. We used the stainless-steel foil glued on the quartz crystal or the polyvinylidene fluoride (PVDF) film as samples. The mean value and the variance of the amplitude in sub-nanometer order were obtained for the irradiated area of 100 μm diameter in the sample. We could obtain the sub-nanometer amplitude with almost zero variance, using the 57Fe synchrotron Mössbauer source and focusing optics for the PVDF film. The resonant absorber vibrated with high frequency and amplitude without variance is useful for the control of gamma rays. This work will advance X-ray quantum optics and quantum technology applications using a single gamma photon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Availability of data and materials is not applicable to this study as no new data were created or analyzed in this study.

References

  1. Adams, B.W., Buth, C., Cavaletto, S.M., Evers, J., Harman, Z., Keitel, C.H., Pálffy, A., Picón, A., Röhlsberger, R., Rostovsev, Y.: Tamasaku.: X-ray quantum optics. J. Mod. Opt. 60, 2 (2013). https://doi.org/10.1080/09500340.2012.752113

    Article  ADS  Google Scholar 

  2. Vagizov, F., Antonov, V., Radeonyshev, Y.V., Shakhmuratov, R.N., Kocharovskaya, O.: Coherent control of the waveforms of recoilless γ-ray photons. Nature. 508, 80 (2014). https://doi.org/10.1038/nature13018

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Röhlsberger, R., Wille, H.-C., Schlage, K., Sahoo, B.: Electromagnetically induced transparency with resonant nuclei in a cavity. Nature. 482, 199 (2012). https://doi.org/10.1038/nature10741

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Heeg, K.P., Kaldum, A., Strohm, C., Reiser, P., Ott, C., Subramanian, T., Lentrodt, D., Haber, J., Wille, H.-C., Goerttler, S., Rüffer, T., Keitel, C.H., Röhlsberger, R., Pferifer, T., Evers, J.: Spectral narrowing of x-ray pulses for precision spectroscopy with nuclear resonances. Science. 357, 375 (2017). https://doi.org/10.1126/science.aan3512

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ruby, S.L., Bolef, D.I.: Acoustically modulated γ rays from Fe57. Phys. Rev. Lett. 5, 5 (1960). https://doi.org/10.1103/PhysRevLett.5.5

    Article  ADS  Google Scholar 

  6. Shakhmuratov, R.N., Vagizov., F.G.: Application of the Mössbauer effect to the study of subnanometer harmonic displacements in thin solids. Phys. Rev. B. 95, 245429 (2017). https://doi.org/10.1103/PhysRevB.95.245429

    Article  ADS  Google Scholar 

  7. Chien, C.L.: Walker.: Mössbauer sidebands from a single parent line. Phys. Rev. B. 13, 1876 (1976). https://doi.org/10.1103/PhysRevB.13.1876

    Article  ADS  CAS  Google Scholar 

  8. Cranshaw, T.E., Reivari., P.: A Mössbauer study of the hyperfine spectrum of 57Fe, using ultrasonic calibration. Proc. Phys. Soc. 90 1059. (1967). https://doi.org/10.1088/0370-1328/90/4/317

  9. du Voorthuysen, E.H., Zhang, G.L., de Waard, H.: Test of the optical theory of Mössbauer quantum beats. Phys. Rev. A 30 2356. (1984). https://doi.org/10.1103/PhysRevA.30.2356

  10. Khairulin, I.R., Radeonychev, Y.V., Antonov, V.A., Kocharovskaya, O.: Acoustically induced transparency for synchrotron hard x-ray photons. Sci. Rep. 11, 7930 (2021). https://doi.org/10.1038/s41598-021-86555-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lynch, F.J., Holland, R.E., Hamermesh., M.: Time Dependence of Resonantly Filtered Gamma Rays from Fe57. Phys. Rev. 120, 513 (1960). https://doi.org/10.1103/PhysRev.120.513

    Article  ADS  CAS  Google Scholar 

  12. Smirnov., G.V.: General properties of nuclear resonant scattering. Hyp Interact. 124/124, 31 (1999). https://doi.org/10.1023/A:1017007520099

    Article  Google Scholar 

  13. Perlow., G.J.: Quantum beats of recoil-free γ radiation. Phys. Rev. Lett. 40, 896 (1978). https://doi.org/10.1103/PhysRevLett.40.896

    Article  ADS  CAS  Google Scholar 

  14. Pfeiffer, L., Heiman, N.D.: Walker.: Mössbauer sidebands by rf excitation of magnetic materials. Phys. Rev. B. 6, 74 (1972). https://doi.org/10.1103/PhysRevB.6.74

    Article  ADS  Google Scholar 

  15. Abragam, A.: L’effect Mössbauer, pp. 22–24. Gordon and Breach, New York (1964)

    Google Scholar 

  16. Mitsui, T., Hirao, N., Ohishi, Y., Masuda, R., Nakamura, Y., Enoki, H., Sakaki, K., Seto, M.: Development of an energy-domain 57Fe-Mössbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell. J. Synchrotron Radiat. 16(6), 723 (2009). https://doi.org/10.1107/S0909049509033615

    Article  CAS  PubMed  Google Scholar 

  17. Mkrtchyan, A.R., Arutyunyan, G.A., Arakelyan, A.R., Gabrielyan, R.G.: Modulation of Mössbauer radiation by coherent ultrasonic excitation in crystals. Phys. Stat. Sol (b). 92 (1979). https://doi.org/10.1002/pssb.2220920103

Download references

Acknowledgements

The authors are grateful to the Accelerator Group of SPring-8 for their support, especially with the operation of electron bunch mode and the top-up injection operation. This work was supported by “Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM)” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Proposal Nos. JPMXP1222QS0104, JPMXP1223QS0002. This work was also supported by JST, the establishment of university fellowship towards the creation of science technology innovation, Grant Number JPMJFS2123.Moreover, this work was supported by JSPS KAKENHI Grant Numbers JP21K12535, JP16K13723.

Funding

This work was supported by JST, the establishment of university fellowship towards the creation of science technology innovation, Grant Number JPMJFS2123. This work was supported by JSPS KAKENHI Grant Numbers JP21K12535, JP16K13723.

Author information

Authors and Affiliations

Authors

Contributions

H. Y. wrote the main manuscript text based on the advice of the other authors. All authors performed the experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hiroyuki Yamashita.

Ethics declarations

Ethical approval

Ethical approval was not required for this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, H., Kitao, S., Kobayashi, Y. et al. Measurement of the sub-nanometer vibration amplitudes using 57Fe synchrotron Mössbauer source. Hyperfine Interact 245, 15 (2024). https://doi.org/10.1007/s10751-024-01854-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-01854-9

Keywords

Navigation