Skip to main content
Log in

Experimental apparatus for detection of radiative decay of \(^{229}\)Th isomer from Th-doped CaF\(_2\)

  • Conference Proceeding
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

Among all the nuclei, Thorium-229 has the lowest excited level at approximately 8.3 eV. This level is an isomeric state with a long radiative lifetime. Therefore, \(\mathbf {^{229}}\)Th can be excited to the isomeric state using a vacuum ultraviolet laser and is expected to have applications such as in frequency standards. Our group has been conducting experiments to excite \(\mathbf {^{229}}\)Th to the isomeric state via the second excited state using the high-intensity X-ray beam available at the SPring-8 facility. To detect vacuum ultraviolet photons from the isomeric state of \(\mathbf {^{229}}\)Th, a dedicated apparatus was constructed. We employed \(\mathbf {^{229}}\)Th-doped CaF\(_2\) crystals as the irradiation target. Because these targets emit numerous scintillation photons due to nuclear decay and X-ray beam irradiation, detectors are required to significantly reduce these background events. To achieve this, we adopted dichroic mirrors and a photomultiplier tube for detecting scintillation photons by nuclear decay, in addition to a solar-blind photomultiplier tube for detecting decay photons from the isomeric state of \(\mathbf {^{229}}\)Th. In this proceedings paper, we describe the experimental apparatus used in the beamtime in 2023.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Notes

  1. The Si(880) monochromator was installed in beamtime of 2023. This is found to be important for avoiding damage to the crystal target.

  2. The typical X-ray beam intensity between the Si(660) and Si(880) monochromator is 9.5\(\times 10^{11}\) /s.

  3. In terms of the reduction of the radioluminescence background events, a smaller crystal is better.

References

  1. Peik, E., Tamm, C.: Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Euro. Phys. Lett. 61, 181 (2003). https://doi.org/10.1209/epl/i2003-00210-x

    Article  ADS  CAS  Google Scholar 

  2. Campbell, C.J., Radnaev, A.G., Kuzmich, A., Dzuba, V.A., Flambaum, V.V., Derevianko, A.: Single-Ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012). https://doi.org/10.1103/PhysRevLett.108.120802

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Peik, E., Okhapkin, M.: Nuclear clocks based on resonant excitation of \(\gamma \)-transitions. C. R. Physique 16, 516–523 (2015). https://doi.org/10.1016/j.crhy.2015.02.007

    Article  CAS  Google Scholar 

  4. Rellergert, W.G., DeMille, D., Greco, R.R., Hehlen, M.P., Torgerson, J.R., Hudson, E.R.: Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the \(^{229}\)Th nucleus. Phys. Rev. Lett. 104, 200802 (2010). https://doi.org/10.1103/PhysRevLett.104.200802

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kazakov, G.A., Litvinov, A.N., Romanenko, V.I., Yatsenko, L.P., Romanenko, A.V., Schreitl, M., Winkler, G., Schumm, T.: Performance of a \(^{229}\)Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012). https://doi.org/10.1088/1367-2630/14/8/083019

    Article  ADS  CAS  Google Scholar 

  6. von der Wense, L., Seiferle, B.: The \(^{229}\)Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020). https://doi.org/10.1140/epja/s10050-020-00263-0

    Article  ADS  CAS  Google Scholar 

  7. Peik, E., Schumm, T., Safronova, M.S., Pálffy, A., Weitenberg, J., Thirolf, P.G.: Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021). https://doi.org/10.1088/2058-9565/abe9c2

    Article  ADS  Google Scholar 

  8. von der Wense, L., et al.: Direct detection of the \(^{229}\)Th nuclear clock transition. Nature 533, 47–51 (2016). https://doi.org/10.1038/nature17669

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Seiferle, B., von der Wense, L., Thirolf, P.G.: Lifetime measurement of the \(^{229}\)Th nuclear isomer. Phys. Rev. Lett. 118, 042501 (2017). https://doi.org/10.1103/PhysRevLett.118.042501

    Article  ADS  PubMed  Google Scholar 

  10. Thielking, J., et al.: Laser spectroscopic characterization of the nuclear-clock isomer \(^{229{\rm m }}\)Th. Nature 556, 321–325 (2018). https://doi.org/10.1038/s41586-018-0011-8

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Seiferle, B., et al.: Energy of the \(^{229}\)Th nuclear clock transition. Nature 573, 243–246 (2019). https://doi.org/10.1038/s41586-019-1533-4

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Sikorsky, T., et al.: Measurement of the \(^{229}\)Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020). https://doi.org/10.1103/PhysRevLett.125.142503

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kraemer, S., et al.: Observation of the radiative decay of the \(^{229}\)Th nuclear clock isomer. Nature 617, 706–710 (2023). https://doi.org/10.1038/s41586-023-05894-z

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Masuda, T., et al.: X-ray pumping of the \(^{229}\)Th nuclear clock isomer. Nature 573, 238–242 (2019). https://doi.org/10.1038/s41586-019-1542-3

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Shigekawa, Y., et al.: Estimation of radiative half-life of \(^{229{\rm m }}\)Th by half-life measurement of other nuclear excited states in \(^{229}\)Th. Phys. Rev. C 104, 024306 (2021). https://doi.org/10.1103/PhysRevC.104.024306

    Article  ADS  CAS  Google Scholar 

  16. Thirolf, P.G., Seiferle, B., von der Wense, L.: The 229-thorium isomer: doorway to the road from the atomic clock to the nuclear clock. J. Phys. B: At. Mol. Opt. Phys. 52, 203001 (2019). https://doi.org/10.1088/1361-6455/ab29b8

    Article  ADS  CAS  Google Scholar 

  17. Beeks, K., Sikorsky, T., Schumm, T., Thielking, J., Okhapkin, M.V., Peik, E.: The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021). https://doi.org/10.1038/s42254-021-00286-6

    Article  CAS  Google Scholar 

  18. Tkalya, E.V.: Spontaneous emission probability for M1 transition in a dielectric medium: \(^{229{\rm m}}\)Th (3/2+, 3.5\(\pm \)1.0 eV) decay. JETP Lett. 71, 311–313 (2000). https://doi.org/10.1134/1.568349

    Article  ADS  CAS  Google Scholar 

  19. Jeet, J., Schneider, C., Sullivan, S.T., Rellergert, W.G., Mirzadeh, S., Cassanho, A., Jenssen, H.P., Tkalya, E.V., Hudson, E.R.: Results of a direct search using synchrotron radiation for the low-energy \(^{229}\)Th nuclear isomeric transition. Phys. Rev. Lett. 114, 253001 (2015). https://doi.org/10.1103/PhysRevLett.114.253001

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Yamaguchi, A., Kolbe, M., Kaser, H., Reichel, T., Gottwald, A., Peik, E.: Experimental search for the low-energy nuclear transition in \(^{229}\)Th with undulator radiation. New J. Phys. 17, 053053 (2015). https://doi.org/10.1088/1367-2630/17/5/053053

    Article  ADS  CAS  Google Scholar 

  21. Stellmer, S., Kazakov, G., Schreitl, M., Kaser, H., Kolbe, M., Schumm, T.: Attempt to optically excite the nuclear isomer in \(^{229}\)Th. Phys. Rev. A 97, 062506 (2018). https://doi.org/10.1103/PhysRevA.97.062506

    Article  ADS  CAS  Google Scholar 

  22. Dessovic, P., Mohn, P., Jackson, R.A., Winkler, G., Schreitl, M., Kazakov, G., Schumm, T.: \(^{229}\)Thorium-doped calcium fluoride for nuclear laser spectroscopy. J. Phys.: Condens. Matter 26, 105402 (2014). https://doi.org/10.1088/0953-8984/26/10/105402

    Article  CAS  PubMed  Google Scholar 

  23. Beeks, K., et al.: Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023). https://doi.org/10.1038/s41598-023-31045-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Masuda, T., et al.: Absolute X-ray energy measurement using a high-accuracy angle encoder. J. Synchrotron Radiat. 28, 111–119 (2021). https://doi.org/10.1107/S1600577520014526

    Article  CAS  PubMed  Google Scholar 

  25. Stellmer, S., Schreitl, M., Schumm, T.: Radioluminescence and photoluminescence of Th:CaF\(_2\) crystals. Sci. Rep. 5, 15580 (2015). https://doi.org/10.1038/srep15580

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation experiments were performed at the BL19LXU line of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) and RIKEN. The author is grateful to the collaboration; Kjeld Beeks, Michael Bartokos, Hiroyuki Fujimoto, Yuta Fukunaga, Hiromitsu Haba, Yoshitaka Kasamatsu, Shinji Kitao, Adrian Leitner, Takahiko Masuda, Guan Ming, Nobumoto Nagasawa, Ryoichiro Ogake, Koichi Okai, Martin Pimon, Martin Pressler, Noboru Sasao, Fabian Schaden, Thorsten Schumm, Makoto Seto, Yudai Shigekawa, Koutaro Shimizu, Tomas Sikorsky, Kenji Tamasaku, Sayuri Takatori, Tsukasa Watanabe, Atsushi Yamaguchi, Yoshitaka Yoda, Akihiro Yoshimi, and Koji Yoshimura.

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP19K14740 and JP21H01094 and Itoh Science Foundation for a grant.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

T.H. and the collaboration members conducted the experiment. T.H. wrote the script and prepared the figures.

Corresponding author

Correspondence to Takahiro Hiraki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Measurement of optical components

Appendix A: Measurement of optical components

For the estimation of the expected number of detected signal photons from \(^{229{\textrm{m}}}\)Th or \(\lambda _{\textrm{isomer}}\), we measured the transmittance or reflectance data of optical components, such as dichroic mirrors and VUV band-pass filters. Figure 6 shows a schematic view of the optical property measurement system. The monochromatic VUV light beam is generated using the deuterium lamp (Heraeus, D200VUV) and the spectrometer (Shinku-kogaku, VMK-200-II). Each sample is placed on motorized stages so that position and angle dependence can be measured. The PMT (Hamamatsu, R6836) is also mounted on another motorized rotation stage so that both transmittance and reflectance can be measured.

Fig. 6
figure 6

Schematic view of the optical property measurement system

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraki, T., on behalf of the collaboration. Experimental apparatus for detection of radiative decay of \(^{229}\)Th isomer from Th-doped CaF\(_2\). Hyperfine Interact 245, 14 (2024). https://doi.org/10.1007/s10751-024-01844-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-01844-x

Keywords

Navigation