Abstract
Application of ZnO as a dilute magnetic semiconductor awaits consensus on the source of reported ferromagnetic behaviour in doped ZnO, whether due to dopant-defect interactions or formation of nanoclusters of the magnetic ion dopants. In a contribution to this search, we report on conversion electron Mössbauer Spectroscopy (CEMS) and magnetization studies on single crystal ZnO substrates implanted with Mn ions with energies and fluences designed to give flat implantation profiles with 3 and 7 at% concentration (samples ZnO:Mn1 and ZnO:Mn2). For CEMS measurements, the substrates were also co-implanted with 3.9 × 1015 cm-2, 60 keV 57Fe ions.
The CEM spectra of both samples, after annealing at 600oC, and above, show no evidence of ferromagnetic components but are dominated by paramagnetic doublets with isomer shifts consistent with Fe3+. The primary doublet component for both samples have identical values of isomer shifts and quadrupole splittings, thus reflecting the similarity in size and nature of the clusters formed. Magnetic isotherms on the ZnO:Mn1 doped sample are satisfactorily fitted by the Langevin function in the range 5 K < T < 30 K, where the magnetic units are isolated Mn, Fe and defect sites and the system is superparamagnetic. At T = 294 K, a fit to the Langevin fit indicates precipitates/clusters of nano-size dimensions in range where superparamagnetic behaviour is expected.
Similar content being viewed by others
Change history
22 December 2022
A Correction to this paper has been published: https://doi.org/10.1007/s10751-022-01811-4
References
Kessler, F., Rudman, D.: Sol. Energy. 77, 685 (2004)
He, M., Yan, C., Li, J., Suryakranshi, M.P., Kim, J., Green, M.A., Hao, X.: Adv. Sci. 8, 2004313 (2021)
Dietl, T., Ohno, H., Matukura, F., Cibert, J., Ferrand, D.: Science. 287, 1019 (2000)
Sato, K., Katayama-Yoshida, H.: Jpn J. Appl. Phys. 39, L555–L558 (2000)
Janisch, R., Gopal, P., Spaldin, N.A.: J. Phys. Condens. Matter. 17, R657–R689 (2005)
Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodoropoulo, N., Hobart, A.F., Park, Y.B., Ren, F., Kim, J., Boatner, L.A.: J. Appl. Phys. 93, 1 (2003)
Ozgur, U., Atirov, Y.I., Liu, C., Teke A., Reschikov, M. A., Dogan, S., Avrutin, V., Cho, S., Mokoc, H.: J. Appl. Phys. 98, 041301 (2005)
Coey, J.M.D.: Solid State Science. 7, 660 (2005)
Theodoropoulou, N.A., Hebard, A.F., Norton, D.P., Budai, J.D., Boatner, L.A., Lee, J.S., Khim, Z.G., Park, Y.D., Overberg, M.E., Pearton, S.J., Wilson, R.G.: Solid State Electron. 47, 2231 (2003)
Norton, D.P., Pearton, S.J.: Appl. Phys. Lett. 82, 239 (2003)
Ip, K., Frazier, R.M., Heo, Y.W., Norton, D.P., Abernathy, C.R., Pearton, S.J., Kelly, J., Rairigh, R., Hebard, A.F., Zavada, J.M., Wilson, R.G.: J. Vac Sci. & Techn B. 21, 1476 (2003)
Venkataraj, S., Ohashi, N., Sakaguchi, I., Adachi, Y., Ohgaki, T., Ryoken, H., Haneda, H.: J. Appl. Phys. 102, 014905 (2007)
Sharma, S., Narayanan, M., Gautam, R., Gopalan, R., Swaminathan, P.: Mater. Chem. Phys. 261, 124206 (2021)
Ziegler, J., Ziegler, M.D., Biersac, J.P.: Nucl. Instrum. Methods. B268, 1818 (2010)
Ahmed, S.A.: Results in Physics. 7, 604 (2017)
Shatnawi, M., Alsmadi, A.M., Bsoul, I., Salameh, B., Mathai, M., Alnawashi, G., Alzoubi, G.M., Al-Dweri, F.: Bawa’aneh M.S, Results in Physics 6, 1064–1071 (2016)
Pan, F., Song, C., Liu, X.J., Yang, Y.C., Zeng, F.: J. Alloys and Compounds. 636, 234–240 (2015)
Gopalakrishnan, I.K., Bagkar, N., Ganguly, R., Kulshreshtha, S.K.: J. Cryst. Growth. 280, 436–441 (2005)
Milivojevic, D., Babić-Stojić, B., Jokanovic, V., Jagličić, Z., Makovec, D.: J. Magn. Magn. Mater. 323, 805–812 (2011)
Yang, T., Lim, Y., Zhu, Y., Li, B., Hunag, J., Jin, H.M., Hu, M.: Mater. Sci. Eng. B. 170, 129–132 (2010)
Fabbiyola, S., Kennedy, L.J., Dakhel, A.A., Bououdina, M., Vijaya, J., Ratnaji, T.: J. Mol. Structure. 1109, 89 (2016)
Khalid, R., Alhazaa, A.N., Khan, M.A.M.: Appl. Phys. A. 124, 536 (2018)
Rao, C.N.R., Deepak, F.L.: J. Mater. Chem. 15, 573 (2005)
Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., Coey, J.M.D.: Phys. Rev. Lett. 93, 1772061 (2004)
Acknowledgements
We thank Patrick Hoffmann of the Friedrich Schiller University, Jena, for carrying out the ion implantations, and acknowledge financial funding by the Deutsche Forschungsgemeinschaft (DFG, RO1198/13 − 1), the Alexander von Humboldt Foundation and the National Research Foundation (South Africa).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Proceedings of the International Symposium on the Industrial Applications of the Mössbauer Effect (ISIAME2022), Olomouc, Czech Republic.
Edited by Libor Machala
The original online version of this article was revised: Modifications have been made to Fig. 3 and caption for Figs. 4 and 5. Full information regarding the corrections made can be found in the correction for this article.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bharuth-Ram, K., Doyle, T.B., Adoons, V. et al. Absence of ferromagnetic behaviour in Mn implanted ZnO. Hyperfine Interact 243, 25 (2022). https://doi.org/10.1007/s10751-022-01809-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10751-022-01809-y