Skip to main content
Log in

Absence of ferromagnetic behaviour in Mn implanted ZnO

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

A Correction to this article was published on 22 December 2022

This article has been updated

Abstract

Application of ZnO as a dilute magnetic semiconductor awaits consensus on the source of reported ferromagnetic behaviour in doped ZnO, whether due to dopant-defect interactions or formation of nanoclusters of the magnetic ion dopants. In a contribution to this search, we report on conversion electron Mössbauer Spectroscopy (CEMS) and magnetization studies on single crystal ZnO substrates implanted with Mn ions with energies and fluences designed to give flat implantation profiles with 3 and 7 at% concentration (samples ZnO:Mn1 and ZnO:Mn2). For CEMS measurements, the substrates were also co-implanted with 3.9 × 1015 cm-2, 60 keV 57Fe ions.

The CEM spectra of both samples, after annealing at 600oC, and above, show no evidence of ferromagnetic components but are dominated by paramagnetic doublets with isomer shifts consistent with Fe3+. The primary doublet component for both samples have identical values of isomer shifts and quadrupole splittings, thus reflecting the similarity in size and nature of the clusters formed. Magnetic isotherms on the ZnO:Mn1 doped sample are satisfactorily fitted by the Langevin function in the range 5 K < T < 30 K, where the magnetic units are isolated Mn, Fe and defect sites and the system is superparamagnetic. At T = 294 K, a fit to the Langevin fit indicates precipitates/clusters of nano-size dimensions in range where superparamagnetic behaviour is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Kessler, F., Rudman, D.: Sol. Energy. 77, 685 (2004)

    Article  ADS  Google Scholar 

  2. He, M., Yan, C., Li, J., Suryakranshi, M.P., Kim, J., Green, M.A., Hao, X.: Adv. Sci. 8, 2004313 (2021)

    Article  Google Scholar 

  3. Dietl, T., Ohno, H., Matukura, F., Cibert, J., Ferrand, D.: Science. 287, 1019 (2000)

    Article  ADS  Google Scholar 

  4. Sato, K., Katayama-Yoshida, H.: Jpn J. Appl. Phys. 39, L555–L558 (2000)

    Article  ADS  Google Scholar 

  5. Janisch, R., Gopal, P., Spaldin, N.A.: J. Phys. Condens. Matter. 17, R657–R689 (2005)

    Article  ADS  Google Scholar 

  6. Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodoropoulo, N., Hobart, A.F., Park, Y.B., Ren, F., Kim, J., Boatner, L.A.: J. Appl. Phys. 93, 1 (2003)

    Article  ADS  Google Scholar 

  7. Ozgur, U., Atirov, Y.I., Liu, C., Teke A., Reschikov, M. A., Dogan, S., Avrutin, V., Cho, S., Mokoc, H.: J. Appl. Phys. 98, 041301 (2005)

  8. Coey, J.M.D.: Solid State Science. 7, 660 (2005)

    Article  ADS  Google Scholar 

  9. Theodoropoulou, N.A., Hebard, A.F., Norton, D.P., Budai, J.D., Boatner, L.A., Lee, J.S., Khim, Z.G., Park, Y.D., Overberg, M.E., Pearton, S.J., Wilson, R.G.: Solid State Electron. 47, 2231 (2003)

    Article  ADS  Google Scholar 

  10. Norton, D.P., Pearton, S.J.: Appl. Phys. Lett. 82, 239 (2003)

    Article  ADS  Google Scholar 

  11. Ip, K., Frazier, R.M., Heo, Y.W., Norton, D.P., Abernathy, C.R., Pearton, S.J., Kelly, J., Rairigh, R., Hebard, A.F., Zavada, J.M., Wilson, R.G.: J. Vac Sci. & Techn B. 21, 1476 (2003)

    Article  Google Scholar 

  12. Venkataraj, S., Ohashi, N., Sakaguchi, I., Adachi, Y., Ohgaki, T., Ryoken, H., Haneda, H.: J. Appl. Phys. 102, 014905 (2007)

    Article  ADS  Google Scholar 

  13. Sharma, S., Narayanan, M., Gautam, R., Gopalan, R., Swaminathan, P.: Mater. Chem. Phys. 261, 124206 (2021)

    Article  Google Scholar 

  14. Ziegler, J., Ziegler, M.D., Biersac, J.P.: Nucl. Instrum. Methods. B268, 1818 (2010)

    Article  ADS  Google Scholar 

  15. Ahmed, S.A.: Results in Physics. 7, 604 (2017)

    Article  ADS  Google Scholar 

  16. Shatnawi, M., Alsmadi, A.M., Bsoul, I., Salameh, B., Mathai, M., Alnawashi, G., Alzoubi, G.M., Al-Dweri, F.: Bawa’aneh M.S, Results in Physics 6, 1064–1071 (2016)

  17. Pan, F., Song, C., Liu, X.J., Yang, Y.C., Zeng, F.: J. Alloys and Compounds. 636, 234–240 (2015)

    Article  Google Scholar 

  18. Gopalakrishnan, I.K., Bagkar, N., Ganguly, R., Kulshreshtha, S.K.: J. Cryst. Growth. 280, 436–441 (2005)

    Article  ADS  Google Scholar 

  19. Milivojevic, D., Babić-Stojić, B., Jokanovic, V., Jagličić, Z., Makovec, D.: J. Magn. Magn. Mater. 323, 805–812 (2011)

    Article  ADS  Google Scholar 

  20. Yang, T., Lim, Y., Zhu, Y., Li, B., Hunag, J., Jin, H.M., Hu, M.: Mater. Sci. Eng. B. 170, 129–132 (2010)

    Article  Google Scholar 

  21. Fabbiyola, S., Kennedy, L.J., Dakhel, A.A., Bououdina, M., Vijaya, J., Ratnaji, T.: J. Mol. Structure. 1109, 89 (2016)

    Article  ADS  Google Scholar 

  22. Khalid, R., Alhazaa, A.N., Khan, M.A.M.: Appl. Phys. A. 124, 536 (2018)

    Article  ADS  Google Scholar 

  23. Rao, C.N.R., Deepak, F.L.: J. Mater. Chem. 15, 573 (2005)

    Article  Google Scholar 

  24. Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., Coey, J.M.D.: Phys. Rev. Lett. 93, 1772061 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Patrick Hoffmann of the Friedrich Schiller University, Jena, for carrying out the ion implantations, and acknowledge financial funding by the Deutsche Forschungsgemeinschaft (DFG, RO1198/13 − 1), the Alexander von Humboldt Foundation and the National Research Foundation (South Africa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bharuth-Ram.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Proceedings of the International Symposium on the Industrial Applications of the Mössbauer Effect (ISIAME2022), Olomouc, Czech Republic.

Edited by Libor Machala

The original online version of this article was revised: Modifications have been made to Fig. 3 and caption for Figs. 4 and 5. Full information regarding the corrections made can be found in the correction for this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharuth-Ram, K., Doyle, T.B., Adoons, V. et al. Absence of ferromagnetic behaviour in Mn implanted ZnO. Hyperfine Interact 243, 25 (2022). https://doi.org/10.1007/s10751-022-01809-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-022-01809-y

Navigation