Skip to main content
Log in

Perturbed angular correlation spectra due to rotating electric field gradients

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The literature on effects of time-dependent hyperfine interactions on perturbed angular correlation (PAC) spectra is dominated by analyses based on models of stochastically fluctuating interactions. The Floquet formalism offers a convenient alternative analysis when interactions have a harmonic time dependence. This is demonstrated in the present work through simulation of PAC spectra due to uniformly rotating electric field gradients (EFGs). Physically, this situation would arise when PAC tracers are embedded in molecules with inertial rotation velocities much larger than molecular collision rates, in which case reorientation of rotation axes would be negligible on the characteristic PAC timescale. The prospect for using PAC to study inertial properties of molecules is explored through simulations with molecules modeled as symmetric, rigid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrade, P.D.R., Vasquez, A., Rogers, J.D., Fraga, E.R.: Nuclear relaxation in (NH4)3HfF7 studied by gamma-gamma angular correlation. Physical Review B 1(7), 2912 (1953)

    Article  ADS  Google Scholar 

  2. Shirley, D.A.: Estimates of correlation times of dissolved complexes from rotational tracer experiments. Journal of Chemical Physics 53, 465 (1970)

    Article  ADS  Google Scholar 

  3. Wagner, H.F., Popp, M., Forker, M.: Determination of nuclear multipole relaxation times by measurements of statistically perturbed angular correlations. Z. Physik 248, 195 (1971)

    Article  ADS  Google Scholar 

  4. Gerdau, E., Birke, J., Winkler, H., Braunsfurth, J.: Time-dependent electric quadrupole interactions in (NH4)3HfF7. Z. Physik 263, 5 (1973)

    Article  ADS  Google Scholar 

  5. Baudry, A., Boyer, P., Vulliet, P.: PAC study of molecular reorientations in liquids. Hyperfine Interactions 2, 279 (1976)

    Article  ADS  Google Scholar 

  6. Baudry, A., Boyer, P., Fabris, J.D., Vulliet, P.: PAC study of molecular rotational motions in dilute solutions. Hyperfine Interactions 10, 1057 (1981)

    Article  ADS  Google Scholar 

  7. Danielsen, E., Bauer, R.: Analysis of perturbed angular correlation spectra of metal ions bound to proteins with rotational correlation times in the intermediate region. Hyperfine Interactions 62, 311 (1990)

    Article  ADS  Google Scholar 

  8. Danielsen, E., Bauer, R., Schneider, D.: Rotational correlation times of peptides determined by perturbed angular correlations of γ-rays. European Biophysics Journal 20, 193 (1991)

    Article  Google Scholar 

  9. Hemmingsen, L., Sas, K.N., Danielsen, E.: Biological applications of pertrubed angular correlations of γ-ray spectroscopy. Chemical Reviews 104, 4027 (2004)

    Article  Google Scholar 

  10. Chakraborty, S., Pallada, S., Pedersen, J.T., Jansco, A., Correia, J.G.: Nanosecond dynamics at protein metal sites: An application of perturbed angular correlation (PAC) of γ-rays spectroscopy. Accounts of Chemical Research 50, 2225 (2017)

    Article  Google Scholar 

  11. Haas, H., Röder, J., Correia, J.G., Schell, J., Fenta, A.S., Vianden, R., Larsen, E.M.H., Aggelund, P.A., Fromseger, R., Hemmingsen, L.B.S., Sauer, S.P.A., Lupascu, D.C., Amaral, V.S.: Free molecule studies by perturbed γ-γ angular correlations: A new path to accurate nuclear quadrupole moments. Physical Review Letters 126, 103001 (2021)

    Article  ADS  Google Scholar 

  12. Abragam, A., Pound, R.V.: Influence of electric and magnetic fields on angular correlations. Physical Review 92, 943 (1953)

    Article  ADS  Google Scholar 

  13. Marshall, A.G., Werbelow, L.G., Meares, C.F.: Effect of molecular shape and flexibility on gamma-ray directional correlations. The Journal of Chemical Physics 57(1), 364 (1972)

    Article  ADS  Google Scholar 

  14. Winkler, H.: γγ angular correlations perturbed by randomly reorienting hyperfine fields. Z Physik A 276, 225 (1976)

    Article  ADS  Google Scholar 

  15. Scherer, C.: Gamma-gamma angular correlations: A model for statistical perturbation with any correlation time. Nuclear Physics A 157, 81 (1970)

    Article  ADS  Google Scholar 

  16. Blume, M.: Perturbed angular correlations: Perturbation factor for arbitrary correlation time. Nuclear Physics A 167, 81 (1971)

    Article  ADS  Google Scholar 

  17. Fetter, A.L., Walecka, J.D.: Theoretical Mechanics of Particles and Continua. McGraw-Hill Publishing Company, New York (1980)

    MATH  Google Scholar 

  18. Thornton, S.T., Marion, J.B.: Classical Dynamics of Particles and Systems, 5th edn. Brooks/Cole—Thompson Learning, Pacific Grove (2004)

  19. Shirley, J.H.: Solution of the Schrödinger equation with a hamiltonian periodic in time. Physical Review 138(4B), 979 (1965)

    Article  ADS  Google Scholar 

  20. Chu, S.I., Telnov, D.A.: Beyond the floquet theorem: generalized floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields. Physics Reports 390, 1 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  21. Hubbard, P.S.: Angular velocity of a nonspherical body undergoing rotational brownian motion. Physical Review A 15(1), 329 (1977)

    Article  ADS  Google Scholar 

  22. Samoson, A., Tuherm, T., Reinhold, A., Heinmaa, I.: In: Klinowski, J. (ed.) New Techniques in Solid-State NMR, Topics in Current Chemistry, vol. 294, pp. 15–31. Springer (2005)

  23. Nishiyama, Y.: In: Experimental Approaches of NMR Spectroscopy, ed. by T.N.M.R.S. of Japan, pp. 171–195. Springer (2018)

  24. Kühne, D., Klappenberger, F., Krenner, W., Klyatskaya, S., Ruben, M., Barth, J.V.: Rotational and constitutional dynamics of caged supramolecules. Proceedings of the National Academy of Sciences 107(50), 21332 (2010)

    Article  ADS  Google Scholar 

  25. Palma, C.A., Björk, J., Rao, F., Kühne, D., Klappenberger, F., Barth, J.V.: Topological dynamis in supramolecular rotors. Nano Letters 14, 4461 (2014)

    Article  ADS  Google Scholar 

  26. Ito, M., Ebata, T., Mikami, N.: Laser spectroscopy of large polyatomic molecules in supersonic jets. Annual Review of Physical Chemistry 39, 123 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Sabbatical Leave Program and the College of Arts and Sciences Professional Development Award at Northern Kentucky University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew O. Zacate.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions (HYPERFINE 2021), 5-10 September 2021, Brasov, Romania

Edited by Ovidiu Crisan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zacate, M.O., Hemmingsen, L. Perturbed angular correlation spectra due to rotating electric field gradients. Hyperfine Interact 242, 56 (2021). https://doi.org/10.1007/s10751-021-01783-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01783-x

Keywords

Navigation