Skip to main content
Log in

Direct observation of magnetic Friedel oscillation at Fe(001) surface

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Surface magnetism of Fe (001) was investigated by the in situ iron-57 probe layer method with a synchrotron Mössbauer source. The observed layer-by-layer internal hyperfine field shows a marked reduction at the surface and an oscillatory behavior with increasing depth in the individual layers below the surface. The calculated layer-by-layer hyperfine interactions (hyperfine field, isomer shift, and quadrupole shift) were consistent with the experimental results. The results give direct evidence for the magnetic Friedel oscillations, penetrating several layers from the Fe (001) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, C. S., Freeman, A. J.: Surface states, surface magnetization, and electron spin polarization: Fe(001). Phys. Rev. B (1981). https://doi.org/10.1103/PhysRevB.24.4364

  2. Freeman, A.J., Krakauer, H., Ohnishi, S., Wang, D.S., Weinert, M., Wimmer, E.: Magnetism at surfaces and interfaces. J. de Physique. (1982). https://doi.org/10.1051/jphyscol:1982725

  3. Fu, C.L., Freeman, A.J.: Magnetism and the electric and magnetic hyperfine interactions at transition metal surfaces: Fe(110). J. Magn. Magn. Mater. (1987). https://doi.org/10.1016/0304-8853(87)90205-8

  4. Friedel, J.: Metallic alloys. Nuovo Cimento Suppl. (1958). https://doi.org/10.1007/BF02751483

  5. Autѐs, G., Barreteau, C., Spanjaard, D., Desjonquѐres, M.: C.: Magnetism of iron: from the bulk to the monatomic wire. J. Phys.: Condens. Matter. (2006). https://doi.org/10.1088/0953-8984/18/29/018

  6. Ohnishi, S., Freeman, A.J., Weinert, M.: Surface magnetism of Fe(001). Phys. Rev. B. (1983). https://doi.org/10.1103/PhysRevB.28.6741

  7. Tange, A., Gao, C.L., Yavorsky, B.Y., Maznichenko, I.V., Ernst, C., Etz, A., Hergert, W., Mertig, I., Wulfhekel, W., Kirschner, J.: Electronic structure and spin polarization of the Fe(001)−p(1×1)O surface. Phys. Rev. B. (2010). https://doi.org/10.1103/PhysRevB.81.195410

  8. Gradmann, U., Waller, G., Feder, R., Tamura, E.: Exchange scattering of spin-polarized electrons from ferromagnetic Fe(110)-surfaces. J. Magn. Magn. Mater. (1983). https://doi.org/10.1016/0304-8853(83)90723-0

  9. Yamauchi, Y., Kurahashi, M.: Spin-polarized metastable deexcitation spectroscopy study of iron films. Appl. Surf. Sci. (2001). https://doi.org/10.1016/S0169-4332(00)00658-9

  10. Amemiya, K.: Sub-nm resolution depth profiling of the chemical state and magnetic structure of thin films by a depth-resolved X-ray absorption spectroscopy technique. Phys. Chem. Chem. Phys. (2012). https://doi.org/10.1039/C2CP41085K

  11. Shinjo, T.: Interface magnetism. Surf. Sci. Rep. (1991). https://doi.org/10.1016/0167-5729(91)90010-U

  12. Keune, W.: Application of Mössbauer spectroscopy in magnetism. Hyperfine Interact. (2012). https://doi.org/10.1007/s10751-012-0570-2

  13. Kiauka, W., Debusmann, K., Keune, W., Brand, R.A., Hosoito, N., Liljequist, D.: Magnetic hyperfine interaction near Fe(100) surfaces in ultrahigh vacuum. Solid State Commun. (1986). https://doi.org/10.1016/0038-1098(86)90237-1

  14. Niesen, L., Mugarza, A., Rosu, M.F., Coehoorn, R., Jungblut, R.M., Roozeboom, F., Baron, A.Q.R., Chumakov, A.I., Rüffer, R.: Magnetic behavior of probe layers of 57Fe in thin Fe films observed by means of nuclear resonant scattering of synchrotron radiation. Phys. Rev. B. (1998). https://doi.org/10.1103/PhysRevB.58.8590

  15. Röhlsberger, R., Thomas, H., Schlage, K., Burkel, E., Leupold, O., Rüffer, R.: Imaging the Magnetic Spin Structure of Exchange-Coupled Thin Films. Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.89.237201

  16. Schlage, K., Röhlsberger, R., Klein, T., Burkel, E., Strohm, C., Rüffer, R.: Spatially resolved magnetic reversal in a multilayered exchange bias system. New J. Phys. (2009). https://doi.org/10.1088/1367-2630/11/1/013043

  17. Couet, S., Diederich, T., Stankov, S., Schlage, K., Slezak, T., Rüffer, R., Korecki, J., Röhlsberger, R.: Probing the magnetic state of Fe/FeO/Fe trilayers by multiple isotopic sensor layers. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3120770

  18. Smirnov, G.V., van Bürck, U., Chumakov, A.I., Baron, A.Q.R., Rüffer, R.: Synchrotron Mössbauer source. Phys. Rev. B. (1997). https://doi.org/10.1103/PhysRevB.55.5811

  19. Mitsui, T., Hirao, N., Ohishi, Y., Masuda, R., Nakamura, Y., Enoki, H., Sakaki, K., Seto, M.: Development of an energy-domain 57Fe-Mössbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell. J. Synchrotron Rad. (2009). https://doi.org/10.1107/S0909049509033615

  20. Mitsui, T., Masuda, R., Seto, M., Suharyadi, E., Mibu, K.: Grazing-incidence synchrotron-radiation 57Fe-Mössbauer spectroscopy using a nuclear Bragg monochromator and its application to the study of magnetic thin films. J. Synchrotron Rad. (2012). https://doi.org/10.1107/S0909049511049958

  21. Mitsui, T., Imai, Y., Masuda, R., Seto, M., Mibu, K.: 57Fe polarization-dependent synchrotron Mössbauer spectroscopy using a diamond phase plate and an iron borate nuclear Bragg monochromator. J. Synchrotron Rad. (2015). https://doi.org/10.1107/S1600577514028306

  22. Mitsui, T., Sakai, S., Li, S., Ueno, T., Watanuki, T., Kobayashi, Y., Masuda, R., Seto, M., Akai, H.: Magnetic Friedel Oscillation at the Fe(001) Surface: Direct Observation by Atomic-Layer-Resolved Synchrotron Radiation 57Fe Mössbauer Spectroscopy. Phys. Rev. Lett. (2020). https://doi.org/10.1103/PhysRevLett.125.236806

  23. Torelli, P., Benedetti, S., Luches, P., Gragnaniello, L., Fujii, J., Valeri, S.: Morphology-induced magnetic phase transitions in Fe deposits on MgO films investigated with XMCD and STM. Phys. Rev. B. (2009). https://doi.org/10.1103/PhysRevB.79.035408

  24. Subagyo, A., Oka, H., Eilers, G., Sueoka, K., Mukasa, K.: Scanning Tunneling Microscopy Observation of Epitaxial bcc-Fe(001) Surface. Jpn. J. Appl. Phys. (2000). https://doi.org/10.1143/JJAP.39.3777

  25. Sinkovic, B., Johnson, P.D., Brookes, N.B., Clarke, A., Smith, N.V.: Magnetic structure of oxidized Fe(001). Phys. Rev. Lett. (1990). https://doi.org/10.1103/PhysRevLett.65.1647

  26. Kurahashi, M., Sun, X., Entani, S., Yamauchi, Y.: Observation of a high negative spin polarization at the Fe/MgO(100) surface oxidized at room temperature. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2995995

  27. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.125.236806 for additional experimental data, the detailed results of sample characterization, and Mössbauer measurements.

  28. Rancourt, D.G., Ping, J.Y.: Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B. (1991). https://doi.org/10.1016/0168-583X(91)95681-3

  29. Akai, H., Akai, M., Blügel, S., Drittler, B., Ebert, H., Terakura, K., Zeller, R., Dederichs, P.H.: Theory of Hyperfine Interactions in Metals. Prog. Theor. Phys. Suppl. 101, 11 (1990). https://doi.org/10.1143/PTP.101.11

    Article  ADS  Google Scholar 

  30. Akai, H., Kotani, T.: Theory of hyperfine fields of iron. Hyperfine Interact. (1999). https://doi.org/10.1023/A:1017057408403

  31. Ogura, M., Akai, H.: The full potential Korringa–Kohn–Rostoker method and its application in electric field gradient calculations. J. Phys.: Condens. Matter. (2005). https://doi.org/10.1088/0953-8984/17/37/011

  32. Dufek, P., Blaha, P., Schwarz, K.: Determination of the Nuclear Quadrupole Moment of 57Fe. Phys. Rev. Lett. (1995). https://doi.org/10.1103/PhysRevLett.75.3545

  33. Vega, A., Rubio, A., Balbas, L.C., Davila, J.D., Demangeat, C., Mokrani, A., Dreyssé, H.: Stepped Fe(001) surface magnetism. J. Magn. Magn. Mater. (1992). https://doi.org/10.1016/0304-8853(92)91509-R

  34. Stoeffler, D., Gauthier, F.: Theoretical investigations of the magnetic behaviour of Cr monolayers deposited on a Fe(001) substrate: Role of a mono-atomic step. J. Magn. Magn. Mater. (1995). https://doi.org/10.1016/0304-8853(95)00023-2

  35. Parida, P., Ganguli, B., Mookerjee, A.: Magnetism on rough surfaces of Fe, Co and Ni : An augmented space approach. Superlatt. Microstruct. (2015). https://doi.org/10.1016/j.spmi.2015.07.047

  36. Korecki, J., Gradmann, U.: In Situ Mössbauer Analysis of Hyperfine Interactions near Fe(110) Surfaces and Interfaces. Phys. Rev. Lett. (1985). https://doi.org/10.1103/PhysRevLett.55.2491

  37. Saito, Y., Uemura, H., Uwaha, M.: Two-dimensional elastic lattice model with spontaneous stress. Phys. Rev. B. (2001). https://doi.org/10.1103/PhysRevB.63.045422

  38. Fujiwara, K., Mitsui, T., Aoyagi, Y., Yoda, Y., Ikeda, N.: Quantum Interference of Totally Reflected Mössbauer γ-Rays from a 57Fe Monolayer Embedded in a Thin Film. J. Phys. Soc. Jpn. (2021). https://doi.org/10.7566/JPSJ.90.084705

  39. Mitsui, T., Mibu, K., Tanaka, M., Kitao, S., Kobayashi, Y., Masuda, R., Seto, M.: Simultaneous Measurement of γ-ray and Conversion Electron Mössbauer Spectra of Fe Films under Total Reflection Conditions Using Synchrotron Mössbauer Source. J. Phys. Soc. Jpn. (2020). https://doi.org/10.7566/JPSJ.89.054707

  40. Andreeva, M.A., Baulin, R.A., Chumakov, A.I., Rüffer, R., Smirnov, G.V., Babanov, Y.A., Devyaterikov, D.I., Milyaev, M.A., Ponomarev, D.A., Romashev, L.N., Ustinov, V.V.: Nuclear resonance reflectivity from a [57Fe/Cr]30 multilayer with the Synchrotron Mössbauer Source. J. Synchrotron Rad. (2018). https://doi.org/10.1107/S1600577517017192

  41. Andreeva, M., Baulin, R., Chumakov, A., Kiseleva, T.Y., Rüffer, R.: Polarization Analysis in Mössbauer Reflectometry with Synchrotron Mössbauer Source. Condens. Matter. (2019). https://doi.org/10.3390/condmat4010008

Download references

Acknowledgements

The authors thank Prof. K. Mibu, Prof. Y. Yamada, Dr. H. Naramoto, Dr. S. Entani, Dr. T. Inami, and Dr. Y. Katayama for their helpful discussions. This work was carried out at SPring-8 (proposal Nos. 2017A3551, B3551, 2018A3552, B3551, B3552, and 2019A3551) and was partially supported by a Grant-in-Aid for Scientific Research (Grant Nos. 16H03875, 17H07376, 17K18373, and 18K13985) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaya Mitsui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania.

Edited by Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsui, T., Sakai, S., Li, S. et al. Direct observation of magnetic Friedel oscillation at Fe(001) surface. Hyperfine Interact 242, 37 (2021). https://doi.org/10.1007/s10751-021-01772-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01772-0

Keywords

Navigation