Skip to main content
Log in

Orthorhombic structure stabilazation in bulk HfO2 by yttrium doping

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The recently observed ferroelectricity in thin films of pure and doped Hafnium oxide (HfO2) has initiated a sustaining effort to stabilize its ferroelectric phase which is the polar orthorhombic (o) phase with space group Pca21. This polar o-phase of the oxide does not appear in its phase transition sequence and is also not thought to be stabilized in bulk oxide. Here, we report the stabilization of three o-phases of this oxide in bulk with space groups Pbca, Pca21 and Pbcm in presence of Yttrium (Y) dopant. For inducing o-phase, 10 at% of Y-dopant has been used and temperature mediated phase transformation from monoclinic (m) to o-phase has been observed. The third o-phase with space group Pbcm could be stabilized for the first time in bulk oxide by Y-dopant. All the o-phases in presence of m-phase could be identified by Time Differential Perturbed γ-γ Angular Correlation (TDPAC) Spectroscopy. The TDPAC parameters assigned to Pbcm phase confirm the theoretical modelization for the phase performed by Wien2K calculation based on Density Functional Theory (DFT). The present work reports the possibility of stabilizing different o-phases including polar one and shows the widening of scope of this oxide for future ferroelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boescke, T.S., Mueller, J., Braeuhaus, D., Schroeder, U., Boettger, U.: Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011)

    Article  ADS  Google Scholar 

  2. Sang, X., Grimley, E.D., Schenk, T., Schroeder, U., LeBeau, J.M.: On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 106(16), 162905 (2015)

    Article  ADS  Google Scholar 

  3. Park, M.H., Lee, Y.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Muller, J., Kersch, A., Schroeder, U., Mikolajick, T., Hwang, C.S.: Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811–1831 (2015)

    Article  Google Scholar 

  4. Park, M.H., Schenk, T., Fancher, C.M., Grimley, E.D., Zhou, C., Richter, C., LeBeau, J.M., Jones, J.L., Mikolajick, T., Schroeder, U.: A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants. J. Mater. Chem. C. 5, 4677–4690 (2017)

    Article  Google Scholar 

  5. Mikolajick, T., Schroeder, U.: Ferroelectricity in bulk hafnia. Nat. Mater. 20, 718 (2021)

    Article  ADS  Google Scholar 

  6. Xu, X., Huang, F.T., Qi, Y., Singh, S., Rabe, K.M., Obeysekera, D., Yang, J., Chu, M.W., Cheong, S.W.: Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat. Mater. 20, 826–832 (2021)

    Article  ADS  Google Scholar 

  7. Banerjee, D., Sewak, R., Dey, C.C., Toprek, D., Pujari, P.K.: Orthorhombic phases in bulk pure HfO2: experimental observation from perturbed angular correlation spectroscopy. Mater. Today Commun. 26, 101827 (2021)

    Article  Google Scholar 

  8. Banerjee, D., Dey, C.C., Kumar, R., Sewak, R., Jha, S.N., Bhattacharyya, D., Acharya, R., Pujari, P.K.: Probing solute-drag effect and its role in stabilizing orthorhombic phase in bulk La-doped HfO2 by X-ray and gamma ray spectroscopy. Phys. Chem. Chem. Phys. 23, 16258 (2021)

    Article  Google Scholar 

  9. Tashiro, Y., Shimizu, T., Mimura, T., Funakubo, H.: Comprehensive study on the kinetic formation of the orthorhombic ferroelectric phase in epitaxial Y-doped ferroelectric HfO2 thin films. Appl. Electron. Mater. 3, 3123–3130 (2021)

    Article  Google Scholar 

  10. Lee, K., Lee, T.Y.: Yang sang Mo, ferroelectricity in epitaxial Y-doped HfO 2 thin film integrated on Si substrate. Appl. Phys. Lett. 112, 202901 (2018)

    Article  ADS  Google Scholar 

  11. Müller, J., Schröder, U., Böscke, T.S., Müller, I., Böttger, U., Wilde, L., Sundqvist, J., Lemberger, M., Kücher, P., Mikolajick, T., Frey, L.: Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011)

    Article  ADS  Google Scholar 

  12. Zhang, Y., Xu, J., Choi, C.K.: Investigation of temperature-dependent ferroelectric properties of Y-doped HfO2 thin film prepared by medium-frequency reactive magnetron co-sputtering. Vacuum. 179, 109506 (2020)

    Article  ADS  Google Scholar 

  13. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k: an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001)

    Google Scholar 

  14. Banerjee, D., Gupta, S.K., Patra, N., Raja, S.W., Pathak, N., Bhattacharyya, D., Pujari, P.K., Thakare, S.V., Jha, S.N.: Unraveling doping induced anatase–rutile phase transition in TiO2 using electron, X-ray and gamma-ray as spectroscopic probes. Phys. Chem. Chem. Phys. 20, 28699–28711 (2018)

    Article  Google Scholar 

  15. Lerf, A., Butz, T.: Nuclear quadrupole interaction and time-resolved perturbed γ-γ-angular correlation spectroscopy: applications in chemistry, materials science, and biophysical chemistry. New Anal. Methods Angew. Chem. Int. Ed. Engl. 26, 110–126 (1987)

    Article  Google Scholar 

  16. Catchen, G.L.: Perturbed-angular-correlation spectroscopy: renaissance of a nuclear technique. MRS Bull. 20(7), 37–46 (1995)

    Article  Google Scholar 

  17. Schatz, G., Weidinger, A.: Nuclear Condensed Matter Physics; Nuclear Methods and Application, Translated by J. A. Gardner. John Wiley, New York (1996)

    Google Scholar 

  18. Dey, C.C.: A perturbed angular correlation spectrometer for material science studies. Pramana. 70(5), 835–846 (2008)

    Article  ADS  Google Scholar 

  19. Ayala, A., Alonso, R., López-García, A.: Temperature dependence of the hyperfine electric-field-gradient tensor at 181Ta in HfO2. Phys. Rev. B. 50, 3547 (1994)

    Article  ADS  Google Scholar 

  20. Banerjee, D., Dey, C.C., Wasim, S.K., Sewak, R.R., Thakare, S.V., Acharya, R., Pujari, P.K.: Stability of monoclinic phase in pure and Gd-doped HfO2: A hyperfine interaction study. Hyperfine Interact. 240, 78 (2019)

    Article  ADS  Google Scholar 

  21. Batra, R., Huan, T.D., Rossetti Jr., G.A., Ramprasad, R.: Dopants promoting ferroelectricity in hafnia: insights from a comprehensive chemical space exploration. Chem. Mater. 29, 9102–9019 (2017)

    Article  Google Scholar 

  22. Available at: http://www.crystallography.net/cod/1545064.html. Accessed 09 May 2021

  23. Suyama, R., Horiuchi, H., Kume, S.: Structural refinements of ZrO2 and HfO2 treated at 600 °C 6 GPa. Yogyo-Kyokai-Shi. 95, 567–568 (1987)

    Article  Google Scholar 

  24. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  25. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Erratum Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  26. Zhang, Y., Yang, W.: Comment on “generalized gradient approximation made simple”. Phys.Rew. Lett. 80, 890 (1998)

    Article  ADS  Google Scholar 

  27. Belošević-Čavor, J., Koteski, V., Radaković, J.: Structure identification and site preference of ta and cd in Ti–Pd alloys: a first-principle study. Solid State Commun. 152, 1072–1075 (2012)

    Article  ADS  Google Scholar 

  28. Blaha, P., Schwarz, K., Herzig, P.: First-principles calculation of the electric field gradient of Li3N. Phys. Rev. Lett. 54, 1192–1195 (1985)

    Article  ADS  Google Scholar 

  29. Hoffmann, M., Schroeder, U., Schenk, T., Shimizu, T., Funakubo, H., Sakata, O., Poh, D., Drescher, M., Adelmann, C., Materlik, R., Kersch, A., Mikolajick, T.: Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The data analysis for the PAC spectra were carried out using the software WINFIT developed by Prof. Dr. T. Butz, Leipzig University, Germany. Mr. A. K. Biswas of Radiochemistry laboratory RCD (BARC), VECC, Kolkata, India is thankfully acknowledged for his help during sample preparation. Authors sincerely thank all the members at DHRUVA reactor, BARC, Mumbai, India for successfully producing the probe nuclei at desired activity level. One of the authors, D. Banerjee, sincerely acknowledges Dr. R. Acharya, Head, Nuclear Analytical and Accelerator Chemistry Section, RCD, BARC, Mumbai, India and Dr. P. K. Pujari, Director, Radiochemistry and Isotope Group, BARC, Mumbai, India for their keen interest and support in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Banerjee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Proceedings of the International Conference on Hyperfine Interactions (HYPERFINE 2021), 5-10 September 2021, Brasov, Romania

Edited by Ovidiu Crisan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, D., Dey, C.C., Sewak, R. et al. Orthorhombic structure stabilazation in bulk HfO2 by yttrium doping. Hyperfine Interact 242, 31 (2021). https://doi.org/10.1007/s10751-021-01765-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01765-z

Keywords

Navigation