Skip to main content
Log in

Tuning the magnetic properties of amorphous Fe-Gd thin films by variation of thickness and composition

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Fe-Gd amorphous thin films of different compositions and thicknesses were analyzed with respect to their magnetic and magneto-optical behavior. By preparing samples with the same Fe/Gd elemental ratio at different thicknesses, and of various Fe/Gd ratios at constant thickness, respectively, we were able to show the influences of these two parameters on the interconnected behavior of the two magnetic sub-lattices, one of Fe and the other of Gd, which are antiferromagnetically coupled. Magneto-Optical Kerr Effect (MOKE) measurements revealed reversed hysteresis loops for sample compositions crossing the magnetic compensation point. Temperature dependent magnetization curves highlighted the variation of the overall net contribution of the two magnetic sub-lattices by changing either the Fe/Gd elemental ratio or the film thickness. 57Fe Conversion Electron Mössbauer (CEM) spectra give additional support to the specific magnetic behavior evidenced by temperature and field dependent Superconducting Quantum Interference Device (SQUID) magnetometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lanza, J., Sotres, P., Sánchez, L., Galache, J.A., Santana, J.R., Gutiérrez, V., Muñoz, L.: Managing Large Amounts of Data Generated by a Smart City Internet of Things Deployment. IJSWIS 12(4), 22–42 (2016). https://doi.org/10.4018/IJSWIS.2016100102

    Google Scholar 

  2. Zhang, H., Chen, G., Ooi, B.C., Tan, K.-L., Zhang, M.: In-Memory Big Data Management and Processing: A Survey. IEEE Trans. Knowl. Data Eng. 27(7), 1920–1948 (2015). https://doi.org/10.1109/TKDE.2015.2427795

    Article  Google Scholar 

  3. Marx, V.: The big challenges of big data. Nature 498, 255–260 (2013). https://doi.org/10.1038/498255a

    Article  ADS  Google Scholar 

  4. Xu, X., Li, H., Xu, W., Liu, Z., Yao, L., Dai, F.: Artificial intelligence for edge service optimization in internet of vehicles: A survey. Tsinghua Sci. Technol. 27(2), 270–287 (2021). https://doi.org/10.26599/TST.2020.9010025

    Article  Google Scholar 

  5. Wetzstein, G., Ozcan, A., Gigan, S.E.A.: Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). https://doi.org/10.1038/s41586-020-2973-6

    Article  ADS  Google Scholar 

  6. Yosra, H., Wadii, B., Imed, R.F., Imed, R., Amir, H.: Big data and iot-based applications in smart environments: A systematic review. Comput. Sci. Rev. 39, 100318 (2021). https://doi.org/10.1016/j.cosrev.2020.100318

    Article  Google Scholar 

  7. Fathi, M., Haghi Kashani, M., Jameii, S.M.E.A.: Big data analytics in weather forecasting: A systematic review. Arch. Computat. Methods Eng. https://doi.org/10.1007/s11831-021-09616-4 (2021)

  8. Courtland, R.: Transistors could stop shrinking in 2021. IEEE Spectr. 53(9), 9–11 (2016). https://doi.org/10.1109/MSPEC.2016.7551335

    Article  Google Scholar 

  9. Meng, J., Miscuglio, M., George, J.K., Babakhani, A., Sorger, V.J.: Electronic Bottleneck Suppression in Next-Generation Networks with Integrated Photonic Digital-to-Analog Converters. Adv. Photonics Res. 2, 2000033 (2021). https://doi.org/10.1002/adpr.202000033

    Article  Google Scholar 

  10. Liu, W., Li, M., Guzzon, R.E.A.: A fully reconfigurable photonic integrated signal processor. Nat. Photon 10, 190–195 (2016). https://doi.org/10.1038/nphoton.2015.281

    Article  ADS  Google Scholar 

  11. Strukov, D., Snider, G., Stewart, D.E.A.: The missing memristor found. Nature 453, 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  ADS  Google Scholar 

  12. Chanthbouala, A., Garcia, V., Cherifi, R.E.A.: A ferroelectric memristor. Nat. Mater 11, 860–864 (2012). https://doi.org/10.1038/nmat3415

    Article  ADS  Google Scholar 

  13. Tiercelin, N., Dusch, Y., Preobrazhensky, V., Pernod, P.: Magnetoelectric memory using orthogonal magnetization states and magnetoelastic switching. J. Appl. Phys. 109, 07D726 (2011). https://doi.org/10.1063/1.3559532

    Article  Google Scholar 

  14. Shen, J., Cong, J., Shang, D.E.A.: A multilevel nonvolatile magnetoelectric memory. Sci. Rep. 6, 34473 (2016). https://doi.org/10.1038/srep34473

    Article  ADS  Google Scholar 

  15. Wang, S., Wei, C., Feng, Y.E.A.: Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo. Light Sci. Appl. 10, 8 (2021). https://doi.org/10.1038/s41377-020-00451-z

    Article  ADS  Google Scholar 

  16. Khorsand, A.R., Savoini, M., Kirilyuk, A., Kimel, A.V., Tsukamoto, A., Itoh, A., Rasing, T.: Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108(12), 127205 (2012). https://doi.org/10.1103/PhysRevLett.108.127205

    Article  ADS  Google Scholar 

  17. Chang, V.: An ethical framework for big data and smart cities. Technol. Forecast. Soc. Chang. 165, 120559 (2021). https://doi.org/10.1016/j.techfore.2020.120559

    Article  Google Scholar 

  18. Peng, H., Nahmias, M.A., de Lima, T.F., Tait, A.N., Shastri, B.J.: Neuromorphic photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24(6), 1–15 (2018). https://doi.org/10.1109/JSTQE.2018.2840448

    Article  Google Scholar 

  19. Avilés-Félix, L., Olivier, A., Li, G.E.A.: Single-shot all-optical switching of magnetization in Tb/Co multilayer-based electrodes. Sci. Rep. 10(5211). https://doi.org/10.1038/s41598-020-62104-w (2020)

  20. Chen, J.Y., He, L., Wang, J.P., Li, M.: All-optical switching of magnetic tunnel junctions with single subpicosecond laser pulses. Phys. Rev. Appl. 7(2), 021001 (2017). https://doi.org/10.1103/PhysRevApplied.7.021001

    Article  ADS  Google Scholar 

  21. Siddiqui, S.A., Han, J., Finley, J.T., Ross, C.A., Liu, L.: Current-induced domain wall motion in a compensated ferrimagnet. Phys. Rev. Lett. 121 (5), 057701 (2018). https://doi.org/10.1103/PhysRevLett.121.057701

    Article  ADS  Google Scholar 

  22. Stanciu, A.E., Schinteie, G., Kuncser, A., Iacob, N., Trupina, L., Ionita, I., Crisan, O., Kuncser, V.: Unexpected magneto-functionalities of amorphous Fe-Gd thin films crossing the magnetization compensation point. J. Magn. Magn. Mater. 498, 166173 (2020). https://doi.org/10.1016/j.jmmm.2019.166173

    Article  Google Scholar 

  23. Rhyne, J.J., Schelleng, J.H., Koon, N.C.: Anomalous magnetization of amorphous TbFe2, GdFe2, and YFe2. Phys. Rev. B 10(11), 4672–4679 (1974). https://doi.org/10.1103/PhysRevB.10.4672

    Article  ADS  Google Scholar 

  24. Tanaka, H., Takayama, S., Fujiwara, T.: Electronic-structure calculations for amorphous and crystalline Gd33Fe67 alloys. Phys. Rev. B 46(12), 7390–7394 (1992). https://doi.org/10.1103/PhysRevB.46.7390

    Article  ADS  Google Scholar 

  25. Kuncser, V., Palade, P., Kuncser, A., Greculeasa, S., Schinteie, G.: Engineering Magnetic Properties of Nanostructures via Size Effects and Interphase Interactions. In: Kuncser, V., Miu, L. (eds.) Size Effects in Nanostructures. Springer Series in Materials Science. Springer, Berlin (2014)

  26. Davies, C.S., Janssen, T., Mentink, J.H., Tsukamoto, A., Kimel, A.V., van der Meer, A.F.G., Stupakiewicz, A., Kirilyuk, A.: Pathways for single-shot all-optical switching of magnetization in ferrimagnets. Phys. Rev. Appl. 13(2), 024064 (2020). https://doi.org/10.1103/PhysRevApplied.13.024064

    Article  ADS  Google Scholar 

  27. Guyader, L.L., El Moussaoui, S., Mengotti, E., Heyderman, L.J., Nolting, F., Tsukamoto, A., Itoh, A., Kirilyuk, A., Rasing, T., Kimel, A.V.: Nanostructuring of GdFeCo thin films for laser induced magnetization switching. J. Magnet. Soc. Jpn. 36, 21–23 (2012). https://doi.org/10.3379/MSJMAG.1108M005

    Article  Google Scholar 

  28. Razouk, A., Sahlaoui, M., Sajieddine, M.: Monte Carlo Study of Magnetism of the Fe/Gd Multilayers: Dependence on the Layers Thickness and Interface Morphology. Int. Scholarly Res Notice. 2012(736341). https://doi.org/10.5402/2012/736341 (2012)

  29. Hansen, P., Clausen, C., Much, G., Rosenkranz, M., Witter, K.: Magnetic and magneto ’optical properties of rare-earth transition’ metal alloys containing Gd, Tb, Fe, Co. J. Appl. Phys. 66, 756 (1989). https://doi.org/10.1063/1.343551

    Article  ADS  Google Scholar 

  30. Brand, R.A.: Improving the validity of hyperfine field distributions from magnetic alloys: Part II: Polarized source and spin texture. Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 28(3), 417–432 (1987). https://doi.org/10.1016/0168-583X(87)90183-2

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Romanian Ministry of Research and Innovation through projects RAISESEE Contract no.17167/2018, PD 163/2020, and Core Program PN030101 (21N/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kuncser.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania

Edited by Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Locovei, C., Iacob, N., Schinteie, G. et al. Tuning the magnetic properties of amorphous Fe-Gd thin films by variation of thickness and composition. Hyperfine Interact 242, 44 (2021). https://doi.org/10.1007/s10751-021-01763-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01763-1

Keywords

Navigation