Skip to main content
Log in

Hyperfine interactions in the Bi1−xLaxFeO3 ferrites (x = 0.0225, 0.075, 0.9)

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Hyperfine interactions in the Bi1−xLaxFeO3 ferrites (where x = 0.0225, 0.075, 0.9) have been studied by means of 57Fe Mössbauer spectroscopy and 140Ce time differential perturbed angular γγ correlation methods. The information about the line shift δ, the lattice εlat and the magnetic εmag contributions to the quadrupole shift ε, isotropic His and anisotropic Han contributions to the hyperfine magnetic field Hhf on 57Fe nuclei, anharmonicity parameter m, distribution of the hyperfine magnetic field p(Hhf), and supertransferred hyperfine magnetic fields on 140Ce probe nuclei were obtained. In all studied compounds, the Fe ions are in a high-spin trivalent state. In the compounds with x = 0.0225 and 0.075 spatially modulated cycloidal magnetic structures exist. It was found that the sign of the effective constant of magnetic anisotropy Keff changes with the variation of x from 0.0225 to 0.075. The substitution of Bi by La increases the value of the hyperfine magnetic field on 57Fe nuclei from 494 kOe in Bi0.9775La0.0225FeO3 to 520 kOe in Bi0.1La0.9FeO3, i.e. by 26 kOe, while the corresponding supertransferred hyperfine magnetic field on 140Ce probe nuclei decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teague, J.R., Gerson, R., James, W.J.: Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8 (13), 1073–1074 (1970). https://doi.org/10.1016/0038-1098(70)90262-0

    Article  ADS  Google Scholar 

  2. Sosnowska, I., Neumaier, T.P., Steichele, E.: Spiral magnetic ordering in bismuth ferrite. Journal of Physics C:, Solid State Physics 15(23), 4835–4846 (1982). https://doi.org/10.1088/0022-3719/15/23/020

    Article  ADS  Google Scholar 

  3. Popov, Y.F., Zvezdin, A.K., Vorob’ev, G.P., Kadomtseva, A.M., Murashev, V.A., Rakov, D.N.: Linear magnetoelectric effect and phase transitions in bismuth ferrite BiFeO3. J. Exp. Theor. Phys. Lett. 57, 69 (1993)

    Google Scholar 

  4. Le Bras, G., Colson, D., Forget, A., Genand-Riondet, N., Tourbot, R., Bonville, P.: Magnetization and magnetoelectric effect in Bi1−xLaxFeO3 (0 ≤ x ≤ 0.15). Phys. Rev. B 80, 134417 (2009). https://doi.org/10.1103/PhysRevB.80.134417

    Article  ADS  Google Scholar 

  5. Acharya, S., Mondal, J., Ghosh, S., Roy, S.K., Chakrabarti, P.K.: Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Mater. Lett. 64(3), 415–418 (2010). https://doi.org/10.1016/j.matlet.2009.11.037

    Article  Google Scholar 

  6. Zhou, J.-S., Marshall, L.G., Li, Z.-Y., Li, X., He, J.-M.: Weak ferromagnetism in perovskite oxides. Phys. Rev. B 102, 104420 (2020). https://doi.org/10.1103/PhysRevB.102.104420

    Article  ADS  Google Scholar 

  7. Park, K., Sim, H., Leiner, J.C., Yoshida, Y., Jeong, J., Yano, S.-I., Gardner, J., Bourges, P., Klicpera, M., Sechovský, V., Boehm, M., Park, J.-G.: Low-energy spin dynamics of orthoferrites AFeO3 (A = Y, La, Bi). Journal of Physics: Condensed Matter 30(23), 235802 (2018). https://doi.org/10.1088/1361-648x/aac06b

    ADS  Google Scholar 

  8. Zalesskii, A.V., Frolov, A.A., Khimich, T.A., Bush, A.A.: Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a Bi1−xLaxFeO3 system studied using 57Fe NMR. Phys. Solid State 45, 141–145 (2003). https://doi.org/10.1134/1.1537425

    Article  ADS  Google Scholar 

  9. Rusakov, V.S., Pokatilov, V.S., Sigov, A.S., Matsnev, M.E., Gubaidulina, T.V.: Diagnostics of a spatial spin-modulated structure using nuclear magnetic resonance and mössbauer spectroscopy. JETP Lett. 100, 463–469 (2014). https://doi.org/10.1134/S0021364014190102

    Article  ADS  Google Scholar 

  10. Levy, R.M., Shirley, D.A.: Hyperfine structure in the 2084-kev state of ce140. Phys. Rev. 140, 811–815 (1965). https://doi.org/10.1103/PhysRev.140.B811

    Article  ADS  Google Scholar 

  11. Salamatin, D.A., Tsvyashchenko, A.V., Salamatin, A.V., Velichkov, A., Magnitskaya, M.V., Chtchelkatchev, N.M., Sidorov, V.A., Fomicheva, L.N., Mikhin, M.V., Kozin, M.G., Nikolaev, A.V., Romashkina, I.L., Budzynski, M.: Hyperfine field studies of the high-pressure phase of noncentrosymmetric superconductor RhGe (B20) doped with hafnium. J. Alloys Compd. 850, 156601 (2021). https://doi.org/10.1016/j.jallcom.2020.156601

    Article  Google Scholar 

  12. Lee, J.-H., Choi, H.J., Lee, D., Kim, M.G., Bark, C.W., Ryu, S., Oak, M.-A., Jang, H.M.: Variations of ferroelectric off-centering distortion and 3d − 4p orbital mixing in La-doped bifeo3 multiferroics. Phys. Rev. B 82, 045113 (2010). https://doi.org/10.1103/PhysRevB.82.045113

    Article  ADS  Google Scholar 

  13. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32(5), 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  14. Zalessky, A.V., Frolov, A.A., Khimich, T.A., Bush, A.A., Pokatilov, V.S., Zvezdin, A.K.: 57Fe NMR study of spin-modulated magnetic structure in BiFeO3. Europhysics Letters (EPL) 50 (4), 547–551 (2000). https://doi.org/10.1209/epl/i2000-00304-5

    Article  ADS  Google Scholar 

  15. Rusakov, V.S., Pokatilov, V.S., Sigov, A.S., Matsnev, M.E., Gapochka, A.M., Pyatakov, A.P.: The effect of temperature on parameters of hyperfine interactions and spatial spin-modulated structure in multiferroic BiFeO3. Ferroelectrics 569, 286–294 (2020). https://doi.org/10.1080/00150193.2020.1822682

    Article  Google Scholar 

  16. Rusakov, V.S., Pokatilov, V.S., Sigov, A.S., Matsnev, M.E., Gubaidulina, T.V.: Diagnostics of a spatial spin modulated structure using nuclear magnetic resonance and mossbauer spectroscopy. JETP Lett. 100, 463–469 (2014). https://doi.org/10.1134/S0021364014190102

    Article  ADS  Google Scholar 

  17. Zalesskii, A.V., Zvezdin, A.K., Frolov, A.A., Bush, A.A.: 57Fe NMR study of a spatially modulated magnetic structure in BiFeO3. J. Exp. Theor. Phys. Lett. 71, 465–468 (2000). https://doi.org/10.1134/1.1307994

    Article  Google Scholar 

  18. Pokatilov, V.S., Makarova, A.O., Gippius, A.A., Tkachev, A.V., Zhurenko, S.V., Bagdinova, A.N., Gervits, N.E.: Evolution of spatial spin-modulated structure with La doping in Bi1−yLayFeO3 multiferroics. J. Magn. Magn. Mater. 517, 167341 (2021). https://doi.org/10.1016/j.jmmm.2020.167341

    Article  Google Scholar 

  19. Sobolev, A.V., Rusakov, V.S., Gapochka, A.M., Glazkova, I.S., Gubaidulina, T.V., Matsnev, M.E., Belik, A.A., Presniakov, I.A.: 57Fe mössbauer spectroscopy study of cycloidal spin arrangements and magnetic transitions in BiFe1−xCoxO3. Phys. Rev. B 101, 224409 (2020). https://doi.org/10.1103/PhysRevB.101.224409

    Article  ADS  Google Scholar 

  20. Rusakov, V.S., Pokatilov, V.S., Sigov, A.S., Matsnev, M.E., Pyatakov, A.P.: Analysis of the magnetic structure of the BiFeO3 multiferroic by mössbauer spectroscopy. Dokl. Phys. 63, 223–226 (2018). https://doi.org/10.1134/S1028335818060113

    Article  ADS  Google Scholar 

  21. Fischer, P., Polomska, M., Sosnowska, I., Szymanski, M.: Temperature dependence of the crystal and magnetic structures of BiFeO3. Journal of Physics C: Solid State Physics 13(10), 1931–1940 (1980). https://doi.org/10.1088/0022-3719/13/10/012

    Article  ADS  Google Scholar 

  22. Koehler, W.C., Wollan, E.O.: Neutron-diffraction study of the magnetic properties of perovskite-like compounds LaBO3. J. Phys. Chem. Solids 2(2), 100–106 (1957). https://doi.org/10.1016/0022-3697(57)90095-1

    Article  ADS  Google Scholar 

  23. Rasera, R.L., Catchen, G.L.: Mn-site hyperfine fields in LaMnO3 and NdMnO3 measured using perturbed-angular-correlation spectroscopy. Phys. Rev. B 58, 3218–3222 (1998). https://doi.org/10.1103/PhysRevB.58.3218

    Article  ADS  Google Scholar 

  24. Dogra, R., Junqueira, A.C., Saxena, R.N., Carbonari, A.W., Mestnik-Filho, J., Moralles, M.: Hyperfine interaction measurements in LaCrO3 and LaFeO3 perovskites using perturbed angular correlation spectroscopy. Phys. Rev. B 63, 224104 (2001). https://doi.org/10.1103/PhysRevB.63.224104

    Article  ADS  Google Scholar 

  25. González Boa, A.: Local Temperature Dependence Study of Bismuth Ferrite upon 111In Implantation: an Atomic Point of View for the In-site Occupation Presented 31 Mar 2021. Presented 31 Mar. http://cds.cern.ch/record/2753245 (2021)

  26. Efe, I.: Investigation of electromagnetic properties of BiFeO3 by Time Differential Perturbed Angular Correlation (TDPAC) technique at ISOLDE (2017)

  27. Marschick, G., Schell, J., Stöger, B., Gon çalves, J.N., Karabasov, M.O., Zyabkin, D., Welker, A., Escobar, C.M., Gärtner, D., Efe, I., Santos, R.A., Laulainen, J.E.M., Lupascu, D.C.: Multiferroic bismuth ferrite: Perturbed angular correlation studies on its ferroic αβ phase transition. Phys. Rev. B 224110, 102 (2020). https://doi.org/10.1103/PhysRevB.102.224110

    Google Scholar 

  28. Capone, M., Ridley, C.J., Funnell, N.P., Guthrie, M., Bull, C.L.: Subtle structural changes in LaFeO3 at high pressure. Physica Status Solidi (b), 258, 2, 2000413. https://doi.org/10.1002/pssb.202000413

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant No. 20-02-00795a) and the Ministry of Education (Grant No. FSFZ-0706-2020-0022). We are grateful for the support in developing a digital TDPAC spectrometer to the Polish representative at the Joint Institute for Nuclear Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Salamatin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions (HYPERFINE 2021), 5-10 September 2021, Brasov, Romania

Edited by Ovidiu Crisan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokatilov, V.S., Salamatin, D.A., Bokov, A.V. et al. Hyperfine interactions in the Bi1−xLaxFeO3 ferrites (x = 0.0225, 0.075, 0.9). Hyperfine Interact 242, 33 (2021). https://doi.org/10.1007/s10751-021-01749-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01749-z

Keywords

Navigation