Skip to main content
Log in

Study of interface and its role in an unusual magnetization reversal in 57FeCoB/MgO bilayer

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

FeCoB/MgO bilayer is prepared to study the interface magnetism and its role in azimuthal angle-dependent magnetic properties. As observed in magneto-optic Kerr effect measurements, unusual hysteresis loops are understood precisely through interface resolved grazing incident nuclear resonance scattering (GINRS) measurements under x-ray standing wave (XSW) conditions. To excite XSW modes, the bilayer is deposited between a Pt waveguide structure, where the position of the anti-nodes is varied by changing incident angles. As GINRS is an isotope sensitive technique, the FeCoB layer is enriched with 57Fe isotope during deposition. The formation of a high-density 57FeCoB layer at the 57FeCoB/MgO interface with a hyperfine field ~34.25 T is found and attributed to the increasing volume of FeCo at the interface. Boron diffusion from 57FeCoB to the MgO layer is found to be responsible for FeCo rich FeCoB layer near the interface. The azimuthal angle-dependent unusual shape of hysteresis loops is described in terms of coupled magnetization reversal between the bulk and interface parts of FeCoB layer. In contrast to some studies in literature, no evidence of the formation of an oxide layer is observed at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001). https://doi.org/10.1126/science.1065389

  2. Reiss, G., Meyners, D.: Reliability of field programmable magnetic logic gate arrays. Appl. Phys. Lett. 88, 1–3 (2006). https://doi.org/10.1063/1.2167609

    Article  Google Scholar 

  3. Löhndorf, M., Duenas, T., Tewes, M., Quandt, E., Rührig, M., Wecker, J.: Highly sensitive strain sensors based on magnetic tunneling junctions. Appl. Phys. Lett. 81, 313–315 (2002). https://doi.org/10.1063/1.1483123

    Article  ADS  Google Scholar 

  4. Djayaprawira, D.D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., Watanabe, N., Yuasa, S., Suzuki, Y., Ando, K.: 230% room-temperature magnetoresistance in CoFeBMgOCoFeB magnetic tunnel junctions. Appl. Phys. Lett. 86, 1–3 (2005). https://doi.org/10.1063/1.1871344

    Article  Google Scholar 

  5. Lee, Y.M., Hayakawa, J., Ikeda, S., Matsukura, F., Ohno, H.: Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett. 90, 2005–2008 (2007). https://doi.org/10.1063/1.2742576

    Article  Google Scholar 

  6. Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F., Ohno, H.: A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010). https://doi.org/10.1038/nmat2804

    Article  ADS  Google Scholar 

  7. Gellert, R., Geiss, O., Klingelhöfer, G., Ladstätter, H., Stahl, B., Walter, G., Kankeleit, E.: Depth selective CEMS in the energy range 0 to 20 keV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 76, 381–382 (1993). https://doi.org/10.1016/0168-583X(93)95246-2

    Article  ADS  Google Scholar 

  8. Couet, S., Schlage, K., Diederich, T., Rüffer, R., Theis-Bröhl, K., Toperverg, B.P., Zhernenkov, K., Zabel, H., Röhlsberger, R.: The magnetic structure of coupled Fe/FeO multilayers revealed by nuclear resonant and neutron scattering methods. New J. Phys. 11, 13038 (2009). https://doi.org/10.1088/1367-2630/11/1/013038

    Article  Google Scholar 

  9. Oko, M., Harada, I., Okada, K.: Theory of XAS and XMCD for the field-controlled valence mixed state in RE compounds. J. Phys. Conf. Ser. 190, 012016 (2009). https://doi.org/10.1088/1742-6596/190/1/012016

  10. Khanderao, A.G., Sergueev, I., Wille, H.C., Kumar, D.: Interface resolved magnetism at metal-organic (Fe/Alq3) interfaces under x-ray standing wave condition. Appl. Phys. Lett. 116, (2020). https://doi.org/10.1063/1.5135361

  11. Parratt, L.G.: Surface studies of solids by total reflection of x-rays. Phys. Rev. 95, 359–369 (1954). https://doi.org/10.1103/PhysRev.95.359

    Article  ADS  Google Scholar 

  12. Singh, S., Kumar, D., Gupta, M., Lalla, N.P.: Study of interface induced anisotropic exchange coupling in amorphous FeCoB/MgO bilayer. J. Alloys Compd. 789, 330–335 (2019). https://doi.org/10.1016/J.JALLCOM.2019.03.025

    Article  Google Scholar 

  13. Gupta, A., Kumar, D., Phatak, V.: Asymmetric diffusion at the interfaces in Fe/Si multilayers. Phys. Rev. B. 81, 155402 (2010). https://doi.org/10.1103/PhysRevB.81.155402

    Article  ADS  Google Scholar 

  14. Gupta, A., Kumar, D., Meneghini, C.: Interface structure in magnetic multilayers using x-ray standing waves. Phys. Rev. B. 75, 064424 (2007). https://doi.org/10.1103/PhysRevB.75.064424

    Article  ADS  Google Scholar 

  15. Klein, H.-P., Ghafari, M., Ackermann, M., Gonser, U., Wagner, H.-G.: Crystallization of amorphous metals. Nucl. Inst. Methods. 199(159–162), (1982)

  16. Ghafari, M., Peng, G., Wang, D., Imai, Y., Kamali, S.: Occurrence of two amorphous phases in an Fe40Co40B20 alloy. Mater. Lett. 164, 535–538 (2016). https://doi.org/10.1016/J.MATLET.2015.10.098

    Article  Google Scholar 

  17. Spurgeon, S.R., Sloppy, J.D., Tao, R., Klie, R.F., Lofland, S.E., Baldwin, J.K., Misra, A., Taheri, M.L.: A study of the effect of iron island morphology and interface oxidation on the magnetic hysteresis of Fe-MgO (001) thin film composites. J. Appl. Phys. 112, (2012). https://doi.org/10.1063/1.4730630

  18. Greer, A.A., Gray, A.X., Kanai, S., Kaiser, A.M., Ueda, S., Yamashita, Y., Bordel, C., Palsson, G., Maejima, N., Yang, S.-H., Conti, G., Kobayashi, K., Ikeda, S., Matsukura, F., Ohno, H., Schneider, C.M., Kortright, J.B., Hellman, F., Fadley, C.S.: Observation of boron diffusion in an annealed ta/CoFeB/MgO magnetic tunnel junction with standing-wave hard x-ray photoemission. Appl. Phys. Lett. 101, 202402 (2012). https://doi.org/10.1063/1.4766351

    Article  ADS  Google Scholar 

  19. Wang, Z., Saito, M., Mckenna, K.P., Fukami, S., Sato, H., Ikeda, S., Ohno, H., Ikuhara, Y.: 1530−1536 downloaded via UGC DAE INDORE on. Nano Lett. 16, 17 (2016). https://doi.org/10.1021/acs.nanolett.5b03627

    Article  Google Scholar 

  20. Harnchana, V., Hindmarch, A.T., Sarahan, M.C., Marrows, C.H., Brown, A.P., Brydson, R.M.D.: Evidence for boron diffusion into sub-stoichiometric MgO (001) barriers in CoFeB/MgO-based magnetic tunnel junctions. J. Appl. Phys. 113, (2013). https://doi.org/10.1063/1.4802692

  21. Cha, J.J., Read, J.C., Buhrman, R.A., Muller, D.A.: Spatially resolved electron energy-loss spectroscopy of electron-beam grown and sputtered CoFeBMgOCoFeB magnetic tunnel junctions. Appl. Phys. Lett. 91, (2007). https://doi.org/10.1063/1.2769753

Download references

Acknowledgements

Portions of this research work were carried out at the synchrotron light source PETRA III of DESY beamline P01. We would like to thank Olaf Leupold and Rene Steinbruegge for their assistance at beamline P01, PETRA III. Financial support provided by the Department of Science and Technology (DST) Government of India (Proposal No. I-20180885) within the framework of the India@DESY collaboration is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions (HYPERFINE 2021), 5-10 September 2021, Brasov, Romania

Edited by Ovidiu Crisan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, M.S., Kumar, Y., Gupta, M. et al. Study of interface and its role in an unusual magnetization reversal in 57FeCoB/MgO bilayer. Hyperfine Interact 242, 17 (2021). https://doi.org/10.1007/s10751-021-01736-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01736-4

Keywords

Navigation