Skip to main content
Log in

X-ray diffraction and Mössbauer spectroscopy of impactite from Jänisjärvi astrobleme

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

X-ray diffraction and Mössbauer spectroscopy with optical microscopy, electron probe microanalysis and Raman spectroscopy were used for the study of Jänisjärvi impactite. The phase composition of impactite was determined and Mössbauer parameters of spectral components were estimated and related to the corresponding iron-bearing phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stöffler, D., Hamann, C., Metzler, K.: Shock metamorphism of planetary silicate rocks and sediments: proposal for an updated classification system. Meteorit. Planet. Sci. 53, 5–49 (2018)

    Article  ADS  Google Scholar 

  2. Muller, N., Hartung, J.B., Jessberger, E.K., Reimold, W.U.: 40Ar–39Ar ages of Dellen, Jänisjärvi, and Sääksjärvi impact craters. Meteoritics. 25, 1–10 (1990)

  3. Jourdan, F., Renne, P.R., Reimold, W.U.: High-precision 40Ar/39Ar age of the Jänisjärvi impact structure (Russia). Earth Planet. Sci. Lett. 265, 438–449 (2008)

    Article  ADS  Google Scholar 

  4. Granovsky, L.B., Feldman, V.I., Nikishina, N.N., Sazonova, L.V., Malysheva, T.V., Polyakova, N.P., Basilevsky, A.T.: A study of biotites from allogene breccia of impact crater Janisjarvi. In: Proceedings of the 10th Lunar and Planetary Science Conference, Houston, USA, 1978, Lunar and Planetary Institute, Houston, pp. 458–460 (1979)

  5. Hill, R.J., Howard, C.J.: A computer program for Rietveld analysis of fixed wavelength X-ray and neutron diffraction patterns. Australian Atomic Energy Commission Research Report, M112 (1986)

  6. Oshtrakh, M.I., Semionkin, V.A.: Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta, Part A: Molec. Biomolec. Spectrosc. 100, 78–87 (2013)

    Article  ADS  Google Scholar 

  7. Oshtrakh, M.I., Semionkin, V.A.: Mössbauer spectroscopy with a high velocity resolution: principles and applications. In: Tuček, J., Miglierini, M. (eds.) Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”, AIP Conference Proceedings, vol. 1781, AIP Publishing, Melville (2016)

  8. Khomenko, V.M., Langer, K., Geiger, C.A.: Structural locations of the iron ions in cordierite: a spectroscopic study. Contrib. Mineral. Petrol. 141, 381–396 (2001)

    Article  ADS  Google Scholar 

  9. Garcia, E., Gancedo, J.R., Gracia, M.: Effect of cycled combustion ageing on a cordierite burner plate. Mater. Charact. 61, 1147–1156 (2010)

    Article  Google Scholar 

  10. Lougear, A., Grodzicki, M., Bertoldi, C., Trautwein, A.X., Steiner, K., Amthauer, G.: Mössbauer and molecular orbital study of chlorites. Phys. Chem. Miner. 27, 258–269 (2000)

    Article  ADS  Google Scholar 

  11. Aja, S.U., Dyar, M.D.: The stability of Fe–mg chlorites in hydrothermal solutions – I. Results of experimental investigations. Appl. Geochem. 17, 1219–1239 (2002)

    Article  Google Scholar 

  12. Brookshaw, D.R., Lloyd, J.R., Vaughan, D.J., Pattrick, R.A.D.: Bioreduction of biotite and chlorite by a Shewanella species. Am. Mineral. 99, 1746–1754 (2014)

    Article  ADS  Google Scholar 

  13. Wu, X., Qin, S., Dubrovinsky, L.: Structural characterization of the FeTiO3–MnTiO3 solid solution. J. Solid State Chem. 183, 2483–2489 (2010)

    Article  ADS  Google Scholar 

  14. Seda, T., Hearne, G.R.: Pressure induced Fe2+ + Ti4+ Fe3+ + Ti3+ intervalence charge transfer and the Fe3+/Fe2+ ratio in natural ilmenite (FeTiO3) minerals. J. Phys. Condens. Matter. 16, 2707–2718 (2004)

    Article  ADS  Google Scholar 

  15. Saensunon, B., Stewart, G.A., Pax, R.: A combined 57Fe–Mössbauer and X-ray diffraction study of the ilmenite reduction process in a commercial rotary kiln. Int. J. Miner. Process. 86, 26–32 (2008)

    Article  Google Scholar 

  16. Murad, E.: Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner. 45, 413–430 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project № FEUZ-2020-0060. The Zavaritsky Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences is supported by the Ministry of Science and Higher Education of the Russian Federation, projects № AAAA-A19-119071090011-6 (A.A.M., D.A.Z., A.D.R.) and № AAAA-А18-118052590028-9 (D.A.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Oshtrakh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania

Edited by Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, A.A., Chukin, A.V., Zamyatin, D.A. et al. X-ray diffraction and Mössbauer spectroscopy of impactite from Jänisjärvi astrobleme. Hyperfine Interact 242, 18 (2021). https://doi.org/10.1007/s10751-021-01735-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01735-5

Keywords

Navigation