Skip to main content
Log in

A direct diode pumped Ti:sapphire laser with single-frequency operation for high resolution spectroscopy

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A direct diode pumped continuous-wave Ti:sapphire laser (DDPTS) is presented. A bow-tie geometry with optical diode is chosen for unidirectional single-mode operation. Frequency selection is performed with a standard combination of birefringent filter and etalon. To accomplish mode-hop free frequency tuning the piezo-driven etalon is stabilized to one of the cavity modes via dither-locking method. To suppress environmental fluctuations the cavity-mode is additionally locked to an external optical cavity with low frequency drift. Feasibility of the setup for high-resolution spectroscopy is demonstrated by saturated absorption spectroscopy of the D2 line of Rubidium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roth, P.W., Maclean, A.J., Burns, D., Kemp, A.J.: . Opt. Lett. 34(21), 3334 (2009). https://doi.org/10.1364/OL.34.003334

    Article  ADS  Google Scholar 

  2. Castro-Marin, P., Mitchell, T., Sun, J., Reid, D.T.: . Opt. Lett. 44(21), 5270 (2019). https://doi.org/10.1364/OL.44.005270

    Article  ADS  Google Scholar 

  3. Moulton, P.F., Cederberg, J.G., Stevens, K.T., Foundos, G., Koselja, M., Preclikova, J.: . Opt. Mater. Express 9(5), 2216 (2019). https://doi.org/10.1364/OME.9.002216

    Article  ADS  Google Scholar 

  4. Moulton, P.F., Cederberg, J.G., Stevens, K.T., Foundos, G., Koselja, M., Preclikova, J.: . Opt. Mater. Express 9(5), 2131 (2019). https://doi.org/10.1364/OME.9.002131

    Article  ADS  Google Scholar 

  5. Murayama, M., Nakayama, Y., Yamazaki, K., Hoshina, Y., Watanabe, H., Fuutagawa, N., Kawanishi, H., Uemura, T., Narui, H.: . Phys. Stat. Solidi A 215(10), 1700513 (2018). https://doi.org/10.1002/pssa.201700513

    Article  ADS  Google Scholar 

  6. Backus, S., Kirchner, M., Lemons, R., Schmidt, D., Durfee, C., Murnane, M., Kapteyn, H.: . Opt. Express 25(4), 3666 (2017). https://doi.org/10.1364/OE.25.003666

    Article  ADS  Google Scholar 

  7. Sawada, R., Tanaka, H., Sugiyama, N., Kannari, F.: . Appl. Opt. 56(6), 1654 (2017). https://doi.org/10.1364/AO.56.001654

    Article  ADS  Google Scholar 

  8. Sonnenschein, V., Ohashi, M., Tomita, H., Iguchi, T.: Nucl. Instrum. Methods Phys. Res. B. https://doi.org/10.1016/j.nimb.2019.03.017 (2019)

  9. Tawfieq, M., Hansen, A.K., Jensen, O.B., Marti, D., Sumpf, B., Andersen, P.E.: . IEEE J. Quantum Electron. 54(1), 1 (2018). https://doi.org/10.1109/JQE.2017.2777860

    Article  Google Scholar 

  10. Wei, Y., Lu, H., Jin, P., Peng, K.: . Opt. Express 25(18), 21379 (2017). https://doi.org/10.1364/OE.25.021379

    Article  ADS  Google Scholar 

  11. Nishizawa, N., Seno, Y., Sumimura, K., Sakakibara, Y., Itoga, E., Kataura, H., Itoh, K.: . Opt. Express 16 (13), 9429 (2008). https://doi.org/10.1364/OE.16.009429

    Article  ADS  Google Scholar 

  12. Geldhof, S., El Youbi, S., Moore, I.D., Pohjalainen, I., Sonnenschein, V., Terabayashi, R., Voss, A.: . Hyperfine Interact. 238(1), 7 (2016). https://doi.org/10.1007/s10751-016-1385-3

    Article  ADS  Google Scholar 

  13. Zhao, W.Z., Simsarian, J.E., Orozco, L.A., Sprouse, G.D.: . Rev. Sci. Instrum. 69(11), 3737 (1998). https://doi.org/10.1063/1.1149171

    Article  ADS  Google Scholar 

  14. Gins, W., de Groote, R., Bissell, M., Buitrago, C.G., Ferrer, R., Lynch, K., Neyens, G., Sels, S.: . Comput. Phys. Commun. 222, 286 (2018). https://doi.org/10.1016/j.cpc.2017.09.012

    Article  ADS  Google Scholar 

  15. Steck, D.A.: Rubidium 87 D Line Data. available online at: http://steck.us/alkalidata(2019)

  16. Steck, D.A.: Rubidium 85 D Line Data. available online at: http://steck.us/alkalidata (2019)

  17. Vernon, A., de Groote, R., Billowes, J., Binnersley, C., Cocolios, T., Farooq-Smith, G., Flanagan, K., Ruiz, R.G., Gins, W., Koszorús, A., Neyens, G., Ricketts, C., Smith, A., Wilkins, S., Yang, X.: Nucl. Instrum. Methods Phys. Res. B. https://doi.org/10.1016/j.nimb.2019.04.049 (2019)

  18. Koszorús, A., Yang, X.F., Billowes, J., Binnersley, C.L., Bissell, M.L., Cocolios, T.E., Farooq-Smith, G.J., de Groote, R.P., Flanagan, K.T., Franchoo, S., Garcia Ruiz, R.F., Geldhof, S., Gins, W., Kanellakopoulos, A., Lynch, K.M., Neyens, G., Stroke, H.H., Vernon, A.R., Wendt, K.D.A., Wilkins, S.G.: . Phys. Rev. C 100, 034304 (2019). https://doi.org/10.1103/PhysRevC.100.034304

    Article  ADS  Google Scholar 

  19. Raeder, S., Block, M., Chhetri, P., Ferrer, R., Kraemer, S., Kron, T., Laatiaoui, M., Nothhelfer, S., Schneider, F., Duppen, P.V., Verlinde, M., Verstraelen, E., Walther, T., Zadvornaya, A.: Nucl. Instrum. Methods Phys. Res. B. https://doi.org/10.1016/j.nimb.2019.05.016 (2019)

  20. Palombo, F., Fioretto, D.: ., vol. 119. https://doi.org/10.1021/acs.chemrev.9b00019. PMID: 31042024 (2019)

  21. Monfared, Y.E., Shaffer, T.M., Gambhir, S.S., Hewitt, K.C.: . Sci. Rep. 9(1), 12092 (2019). https://doi.org/10.1038/s41598-019-48573-8

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS Grant-in-Aid for Scientific Research 19H05584, the Japan Science and Technology Agency (JST) SENTAN Grant Number JPMJSN16B2, JST PRESTO and Tatematsu foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Sonnenschein.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of PLATAN 2019, 1st International Conference, Merger of the Poznan Meeting on Lasers and Trapping Devices in Atomic Nuclei Research and the International Conference on Laser Probing, Mainz, Germany 19-24 May 2019

Edited by Krassimira Marinova, Michael Block, Klaus D.A. Wendt and Magdalena Kowalska

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonnenschein, V., Tomita, H., Kotaro, K. et al. A direct diode pumped Ti:sapphire laser with single-frequency operation for high resolution spectroscopy. Hyperfine Interact 241, 32 (2020). https://doi.org/10.1007/s10751-020-1706-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-020-1706-4

Keywords

Navigation