Skip to main content
Log in

Mössbauer and structural study of the Fe3Sn system and the effect of doping with indium

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

In this work, we study the possibility of obtaining the pure Fe3Sn phase by means of two solid-state reactions (2-SSR) method in which two thermal treatments are made. Samples of Fe3Sn1-xInx were prepared with x = 0.00, 0.05, 0.10, 0.15 and 0.20 by means of two solid state reactions. These samples were studied by X-ray diffraction (DRX) and Mössbauer spectrometry (MS). Rietveld analysis showed that the DRX patterns of the samples were refined with the hexagonal crystalline phases: Fe3Sn, Fe2Sn, FeSn2, FeSn, In0.2Sn0.8 and the cubic phase Fe1.84Sn0.16. With this structural analysis, it was shown that the Fe3Sn phase appears in the Fe3Sn1-xInx sample with x = 0.00 in an approximately 90% wt. In addition, it was found that the weight percentage (wt%) of the Fe3Sn phase present in each of the 5 samples decreases as the doping or insertion of In increases in the Fe3Sn1-xInx samples, while the weight percentage of the In0.2Sn0.8 phase increases as indium doping increases. The other crystalline phases present in the samples do not change monotonously or follow some pattern. The Mössbauer spectra for the samples were adjusted with sextets associated with the ferromagnetic phases such as: Fe3Sn, Fe3Sn2, FeSn and Fe1.84Sn0.16. The Mössbauer adjustments showed that the percentage of spectral area of the Fe3Sn magnetic phase decreases as indium doping increases and the percentage of spectral area of the Fe3Sn2, FeSn and Fe1.84Sn0.16 phases increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buschow, K.H.J.: New developments in hard magnetic materials. Rep. Prog. Phys. 54, 1123–1213 (1991)

    Article  ADS  Google Scholar 

  2. Herbst, J.F.: R2Fe14B materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819–898 (1991)

    Article  ADS  Google Scholar 

  3. Coey, J.M.D.: Hard Magnetic Materials: a perspective. IEEE Trans. Magn. 47, 4671–4681 (2011)

    Article  ADS  Google Scholar 

  4. Givord, D., Li, H.S., Perrier de al Bathie, R.: Magnetic Properties of Y2Fe14B and Nd2Fe14B Single Crystals. Solid State Commun. 51, 857–860 (1984)

    Article  ADS  Google Scholar 

  5. Sales, B.C., Saparov, B., McGuire, M.A., Singh, D.J., Parker, D.S.: Ferromagnetism of Fe3Sn and alloys. Sci. Rep. 54, 7024 (2014)

    Google Scholar 

  6. McCallum, R., Lewis, L., Skomski, R., Kramer, M., Anderson, I.: Practical aspects of modern and future permanent magnets. Annu. Rev. Mater. Res. 44, 451 (2014)

    Article  ADS  Google Scholar 

  7. Kuzmin, M.D., Skokov, K.P., Jian, H., Radulov, I., Gutfleisch, O.: Towards high-performance permanent magnets without rare earth. J. Phys. Condens. Matter. 6, 064205 (2014)

    Article  Google Scholar 

  8. Skokov, K., Gutfleisch, O.: Heavy rare earth free, free rare earth and rare earth free magnets-vision and reality. Scr. Mater. 154, 289–294 (2018)

    Article  Google Scholar 

  9. Trumpy, G., Both, E., Djega-Mariadassou, C., Lecocq, P.: Mössbauer-effect studies of iron-tin alloys. Phys. Rev. B. 9, 3477 (1970)

    Article  ADS  Google Scholar 

  10. Vekilova, O.Y., et al.: Tuning the magnetocrystalline anisotropy of Fe3Sn by alloying. Physical Review B. 99, 024421 (2019)

    Article  ADS  Google Scholar 

  11. Echevarria-Bonet, C., Iglesias, N., Garitaonandia, J.S., Salazar, D., Hadjipanayis, G.C., Barandiaran, J.M.: Structural and magnetic properties of hexagonal Fe3Sn prepared by non-equilibrium techniques. J. Alloys Compd. 769, 843–847 (2018)

    Article  Google Scholar 

  12. B. Predel, Fe-sn (Iron-tin), Springer Berlin Heidelberg, Berlin, 1995. O. K. von Goldbeck, Iron-Tin Fe-Sn, Springer Berlin Heidelberg, Berlin, 1982

  13. Giefers, H., Nicol, M.: High pressure X-ray diffraction study of all Fe–Sn intermetallic compounds and one Fe–Sn solid solution. J. Alloys Compd. 422, 132–144 (2006)

    Article  Google Scholar 

  14. Bansal, C., Gao, Z.Q., Hong, L.B., Fultz, B.: Phases and phase stabilities of Fe3X alloys (X= Al, as, Ge, in, Sb, Si, Sn, Zn) prepared by mechanical alloying. J. Appl. Phys. 76, 5961–5966 (1994)

    Article  ADS  Google Scholar 

  15. Trumpy, G., Both, E., Djega-Mariadassou, C., Lecocq, P.: Mössbauer-effect studies of iron-tin alloys. Physical Review B. 2(9), 3477–3485 (1970)

    Article  ADS  Google Scholar 

  16. C. Djega-Mariadassou, P. Lecocq, G. Trumpy, J. Tr€aff, P. Østergaard, Nuovo. Mössbauer Study on FeSn and Fe3Sn. Il Nuovo Cimento B. 46, 35–45, (1966)

  17. Toby, B.H., Dreele, R.B.: GSAS-II: the genesis of a modern open–source all-purpose crystallography software package. J. Appl. Crystallogr. 46(2), 544–549 (2013)

    Article  Google Scholar 

  18. A. Germán Pérez, Difracción de rayos x y el método de rietveld, (2011)

  19. J. Teillet and F. Varret. Unpublished Mosfit program. Université du Maine. Ciment. B (1965–1970) 46 (1) (1966) 35e45

  20. H. Giefers and M. Nicol. High pressure X-ray diffraction study of all Fe–Sn intermetallic compounds and one F e–Sn solid solution. 422, 132–144, (2006)

  21. U. Godswill. Development of Nanoparticulate Forms of Tin–Based Alloy Materials for High Energy Density Anodes in Lithium-Ion Batteries, Doctoral Thesis. Department of Inorganic Chemistry and Chemical Engineering, University of Córdoba, Córdoba, Spain, (2012)

  22. Yelsukov, E.P., Voronina, E.V., Konygin, G.N., Barinov, V.A., Godovikov, S.K., Dorofeev, G.A., Zagainov, A.V.: Structure and magnetic properties of F e 100−x Sn x (3.2< x < 62) alloys obtained by mechanical milling. Journal of magnetism and magnetic materials. 166, 334–348 (1997)

    Article  ADS  Google Scholar 

  23. Ehret, W.F., Westgren, A.F.: x-Ray Analysis of Iron–Tin Alloys. Journal of the American Chemical Society. 55, 1339–1351 (1933)

    Article  Google Scholar 

  24. P. Villars, K. Cenzual, and R. Gladyshevskii. Handbook. Walter de Gruyter GmbH & Co KG, (2014)

  25. Podgornykh, S., Gerasimov, E., Mushnikov, N., Kanomata, T.: Heat capacity of the N i 50 M n 37 (in 0.2 Sn 0.8) 13 alloy. J. Phys. Conf. Ser. 266, 012004 (2011)

    Article  Google Scholar 

  26. Degtyareva, V., Degtyareva, O., Holzapfel, W., Takemura, K.: Phase transitions of a simple hexagonal In 0.2 Sn 0.8 alloy under high pressure. Physical Review B. 61, 5823 (2000)

    Article  ADS  Google Scholar 

  27. Kubiak, R., Lukaszewicz, K.: The crystal structure and thermal expansion of In3Sn and InSn 4. Bulletin de lÁcademie Polonaise des Sciences. Serie des Sciences Chimiques. 22, 281–286 (1974)

    Google Scholar 

  28. P. Villars, and K. Cenzual. Applying high–throughput computational techniques for discovering next

Download references

Acknowledgements

This research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-19-2-0030. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. Part of the research was also sponsored by COLCIENCIAS under Contract 110,671,250,407 and the support of Universidad del Valle (CI. 71181) and of INAPEN Project number 691235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Andrés Palchucán.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the IV Escuela Colombiana de Espectroscopía Mössbauer, Ibagué, Colombia, 10-12 July 2019

Edited by Jean-Marc Grenèche, Humberto Bustos Rodriguez and Juan Sebastian Trujillo Hernandez

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palchucán, C.A., Zamora, L.E., Pérez, G.A. et al. Mössbauer and structural study of the Fe3Sn system and the effect of doping with indium. Hyperfine Interact 241, 42 (2020). https://doi.org/10.1007/s10751-020-1702-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-020-1702-8

Keywords

Navigation