Skip to main content
Log in

Fe content and calcination temperature effects on CuO nanoparticles

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

In this work, a detailed study of the Fe doped effect on the structural properties of copper oxide nanoparticles (NP’s) is reported. The studied samples were those of the (Cu100–xFex)O system, with x = 0, 3, 6, 9, 12 and 15 for calcination temperatures of 140, 160, 180, 200, 220, 240 and 260 °C. The samples were prepared by the co-precipitation method. The molar concentration of the precipitator agent was 7 M. From the refinement of the diffraction patterns, using the Rietveld method, it was found that all the samples exhibit only one structural phase, that of CuO (tenorite), which is a monoclinic structure with space group C2/c, and the samples have crystallite sizes that range from 39 to 57 ± 1 nm, depending on the Fe content. By transmission electronic microscopy (TEM), it was observed that the mean particle size for the sample with 15 at. % Fe was 46 ± 19 nm. Combined with X-Ray diffraction (XRD) results, can be concluded that the nanoparticles are monocrystalline. Fe contributes to increasing the crystallite size and promoting its stability, which may be because of its affinity with oxygen, which contributes to a reduction of the oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tiwari, J.N., Tiwari, R.N., Kim, K.S.: Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803 (2012)

    Article  Google Scholar 

  2. Spencer, M.J.S.: Gas sensing applications of 1D-nanostructured zinc oxide: insights from density functional theory calculations. Prog. Mater. Sci. 57, 437–486 (2012)

    Article  Google Scholar 

  3. Barth, S., Hernandez-Ramirez, F., Holmes, J.D., Romano-Rodriguez, A.: Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 55, 563–627 (2010)

    Article  Google Scholar 

  4. Comini, E., Baratto, C., Faglia, G., Ferroni, M., Vomiero, A., Sberveglieri, G.: Quasi-one-dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54, 1–67 (2009)

    Article  Google Scholar 

  5. Bisht, V., Rajeev, K.P.: Banerjee S. anomalous magnetic behavior of CuO nanoparticles. Solid State Commun. 150, 884–887 (2010)

    Article  ADS  Google Scholar 

  6. Hong, Z.-S., Cao, Y.: Jing-fa. Deng a convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater. Lett. 52, 34–38 (2002)

    Article  Google Scholar 

  7. Chowdhuri, A., Gupta, V., Sreenivas, K., Kumar, R., Mozumdar, S., Patanjali, P.K.: Response speed of SnO2 –based H2S gas sensor with CuO nanoparticles. Applied Physics Letters. 84, 1180–1182 (2014)

    Article  ADS  Google Scholar 

  8. Huang, F., Zhong, Y., Chen, J., Li, S., Li, Y., Wang, F., Fengab, S.: Nonenzymatic glucose sensor based on three different CuO nanomaterials. Anal. Methods. 5, 3050–3055 (2013)

    Article  Google Scholar 

  9. Jiang, L.-C., Zhang, W.-D.: A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25, 1402–1407 (2010)

    Article  Google Scholar 

  10. Zhanga, Q., Zhanga, K., Xua, D., Yangb, G., Huangb, H., Nieb, F., Liuc, C., Yangd, S.: CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208–337 (2014)

    Article  Google Scholar 

  11. Zhou, Z.-Y., Tian, N., Li, J.-T.: Broadwell I, Shi-gang sun. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40, 4167–4185 (2011)

    Article  Google Scholar 

  12. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  13. Zheng, H., Ou, J.Z., Strano, M.S., Kaner, R.B., Mitchell, A., Kalantar-zadeh, K.: Nanostructured tungsten oxide – properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2198 (2011)

    Article  Google Scholar 

  14. Punnoose, A., Magnone, H., Seehra, M.S.: Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys. Rev. B. 64(174420), 1–8 (2001)

    Google Scholar 

  15. Gazioğlua, D.T., Dumludağb, F., Altindalb, A.: Characterization of doped and Undoped CuO nanoparticles. AIP Conference Proceedings. 1203, 456–460 (2010)

    Article  ADS  Google Scholar 

  16. Li, Y., Xu, M., Pan, L., Zhang, Y., Guo, Z.: Structural and room-temperature ferromagnetic properties of Fe-doped CuO nanocrystals. J. Appl. Phys. 107(113908), 1–6 (2010)

    Google Scholar 

  17. Basith, N.M., Vijaya, J.J., Kennedy, L.J., Bououdina, M.: Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Phys. E. 53, 193–199 (2013)

    Article  Google Scholar 

  18. Colorado, H.D., Pérez Alcázar, G.A.: Magnetic and structural properties of Cu0.85Fe0.15O system synthesized by co-precipitation. Hyperfine Interactions. 2002, 139–144 (2011)

    Article  ADS  Google Scholar 

  19. Chen, Z., Jiao, Z., Pan, D., Li, Z., Wu, M., Shek, C.: Recent advances in manganese oxide Nanocrystals: fabrication, characterization, and microstructure. Chem. Rev. 112, 3833–3855 (2012)

    Article  Google Scholar 

  20. García, M., Arias, A., Hanson, J., Rodríguez, J.: Nanostructured oxides in chemistry: characterization and properties. Chem. Rev. 104, 4063–4074 (2004)

    Article  Google Scholar 

  21. Zhu, J., Li, D., Chen, H., Yang, X., Lu, L., Wang, X.: Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater. Lett. 58, 3324–3327 (2004)

    Article  Google Scholar 

  22. Varret, F., Teillet, J.: Unpublished MOSFIT program, Maine University. France.

  23. Larson A. C, Von Dreele R. B, “General Structure Analysis System (GSAS)”, los Alamos National Laboratory Report LAUR 86–748 (2004)

  24. Park, Y.R., Kim, K.J., S-li, C., Lee, J.H., Lee, H.J.: Ferromagnetism in 57Fe-doped cupric oxide. Physics Status Solidi B. 244, 4578–4581 (2007)

    Article  ADS  Google Scholar 

  25. Stewart, S.J., Goya, G.F., Punte, G., Mercader, R.C.: Phase transformations in Fe-doped cupric oxide. J. Phys. Chem. Solids. 58, 73–77 (1997)

    Article  ADS  Google Scholar 

  26. Borzi, R.A., Stewart, S.J., Punte, G., Mercader, R.C.: Effect of ion doping on CuO magnetism. J. Appl. Phys. 87, 4870–4872 (2000)

    Article  ADS  Google Scholar 

  27. Borzi, R.A., Stewart, S.J., Punte, G., Mercader, R.C., Cernicchiaro, G., Garcia, F.: Glassy magnetic behavior in a nanostructured cu–Fe–O system. Hyperfine Interactions. 148, 109–116 (2003)

    Article  ADS  Google Scholar 

  28. Ahn, G.Y., Seung-Iel Park, S.I., Shim, I.B., Kim, C.S.: Mössbauer studies of ferromagnetism in Fe-doped ZnO magnetic semiconductor. J. Magn. Magn. Mater. 282, 166–169 (2004)

    Article  ADS  Google Scholar 

  29. Colorado, H.D., Trujillo Hernández, J.S., Pérez Alcázar, G.A., Bolaños, A.: Structural, calorimetric and magnetic properties study of the Cu0.91Fe0.09O system. Hyperfine Interactions. 224, 171–178 (2013)

    Article  ADS  Google Scholar 

  30. Schrödera, C., Baileyb, B., Klingelhöfera, G., Staudigel, H.: Fe Mössbauer spectroscopy as a tool in astrobiology. Planet and Space Science. 54, 1622–1634 (2006)

    Article  ADS  Google Scholar 

  31. Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., Liu, R.: Effect of aspect ratio and surface defects on photocatalytic activity of ZnO nanorods. Sci. Rep. 4, 4596–4561 (2014)

    Article  ADS  Google Scholar 

  32. Jaiswar, S., Mandal, K.D.: Evidence of enhanced oxygen vacancy defects inducing ferromagnetism in multiferroic CaMn7O12 manganite with sintering time. J. Phys. Chem. C. 121(36), 19568–19601 (2017)

    Article  Google Scholar 

  33. Ghijsen, J., Tjeng, L.H., Vanelp, J., Eskes, H., Westerink, J., Sawatzky, G.A., Czyzyk, M.T.: Phys. Rev. B. 38, 11322–11327 (1988)

    Article  ADS  Google Scholar 

  34. Li, Y., Xu, M., Pan, L., Zhang, Y., Guo, Z., Bi, C.: J. Appl. Phys. 107, 113908–113914 (2010)

    Article  ADS  Google Scholar 

  35. Manna, S., De, S.K.: Room temperature ferromagnetism in Fe doped CuO nanorods. J. Magn. Magn. Mater. 322, 2749–2753 (2010)

    Article  ADS  Google Scholar 

  36. Izumi, F., Momma, K.: Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007)

    Article  Google Scholar 

  37. Torrance, J.B., Shafer, M.W., McGuire, T.R.: Bound magnetic Polarons and the insulator-metal transition in EuO. Physics Review Letters. 29, 1168–1171 (1972)

    Article  ADS  Google Scholar 

  38. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    Article  ADS  Google Scholar 

  39. Yin, S.Y., Yuan, S.L., Tian, Z.M., Liu, L.: Effect of particle size on the exchange bias of Fe-doped CuO nanoparticles. J. Appl. Phys. 107, 043909 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the partial supports of Universidad del Valle; of Colciencias, Colombian Agency, through the research project 110671250407, and the CENM of Universidad del Valle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Darío Colorado.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the IV Escuela Colombiana de Espectroscopía Mössbauer, Ibagué, Colombia, 10–12 July 2019

Edited by Jean-Marc Grenèche, Humberto Bustos Rodriguez and Juan Sebastian Trujillo Hernandez

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colorado, H.D., Alcázar, G.A.P. Fe content and calcination temperature effects on CuO nanoparticles. Hyperfine Interact 241, 51 (2020). https://doi.org/10.1007/s10751-020-01720-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-020-01720-4

Keywords

Navigation