Skip to main content
Log in

Iron sites in radiation-damaged allanite-(Ce): the effects of thermally induced oxidation and structural reorganization

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Radiation-damaged allanite-(Ce) starts to recrystallize at an annealing temperature below 700 K. At the same temperature Fe2+ → Fe3+ oxidation, as well as dehydration occurs. Three radiation-damaged samples (S74 20414: 0.55 wt% ThO2, LB-1: 1.18 wt% ThO2, R1: 1.59 wt% ThO2) as well as one crystalline sample (RS221) were investigated using 57Fe Mössbauer spectroscopy after step-wise annealing. Additionally, the three damaged samples were investigated by in-situ mass spectrometry, analysing the escaping gases during thermal treatment showing the dehydration process. 57Fe Mössbauer spectroscopy revealed not only a general Fe2+ → Fe3+ oxidation, it also showed that this process is not fully completed after annealing at 1000 K in sample LB-1 which is the sample showing the fastest and strongest recrystallization. The crystalline sample also still incorporated Fe2+ as well as Fe3+ after annealing at 1000 K. In addition, a preferred occupation of iron at the position M3 was identified in the crystalline sample which did not occur in the pristine radiation-damaged samples (M1/M3 site distribution: RS221: 17/83, pristine samples R1: 49/51, LB-1: 60/40, S74 20414: 52/48). After annealing at 1000 K sample LB-1 showed a similar distribution as the crystalline sample with a M1/M3 distribution of 15/85. It is therefore proposed that the process of amorphization through α-decay damage changes the distribution of iron atoms on its possible crystallographic sites, and that this process is reversible through thermal annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y., Pasero, M.: Recommended nomenclature of epidote-group minerals. Eur. J. Mineral. 18, 551–567 (2006)

    Article  ADS  Google Scholar 

  2. Bonazzi, P., Holtstam, D., Bindi, L., Nysten, P., Capitani, G.C.: Multi-analytical approach to solve the puzzle of an allanite-subgroup mineral from Kesebol, Västra Götaland, Sweden. Am. Mineral. 94, 121–134 (2009)

    Article  ADS  Google Scholar 

  3. Mills, S.J., Hatert, F., Nickel, E.H., Ferraris, G.: The standardisation of mineral group hierarchies: application to recent nomenclature proposals. Eur. J. Mineral. 21, 1073–1080 (2009)

    Article  ADS  Google Scholar 

  4. Ercit, T.S.: The mess that is “allanite”. Can. Mineral. 40, 1411–1419 (2002)

    Article  Google Scholar 

  5. Kartashov, P.M., Ferraris, G., Ivaldi, G., Sokolova, E., McCammon, C.A.: Ferriallanite-(Ce), CaCeFe3+AlFe2+(SiO4)(Si2O7)O(OH), a new member of the epidote group: description, X-ray and Mössbauer study. Can. Miner. 40, 1641–1648 (2002)

    Article  Google Scholar 

  6. Dollase, W.A.: Mössbauer spectra and iron distribution in the epidote-group minerals. Z. Kristallogr. 138, 41–63 (1973)

    Article  Google Scholar 

  7. Ewing, R.C., Meldrum, A., Wang, L.M., Wang, S.X.: Radiation-induced amorphization. Rev. Mineral. Geochem. 39, 319–361 (2000)

    Article  Google Scholar 

  8. Ewing, R.C.: Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle. Mineral. Mag. 75, 2359–2377 (2011)

    Article  Google Scholar 

  9. Čobić, A., Bermanec, V., Tomašić, N.: The hydrothermal recrystallization of metamict allanite-(Ce). Can. Mineral. 48, 513–521 (2010)

    Article  Google Scholar 

  10. Zhang, M., Salje, E.K.H., Malcherek, T., Bismayer, U., Groat, L.A.: Dehydration of metamict titanite: an infrared spectroscopic study. Can. Mineral. 38, 119–130 (2000)

    Article  Google Scholar 

  11. Reissner, C.E., Bismayer, U., Kern, D., Reissner, M., Park, S., Zhang, J., Ewing, R.C., Shelyug, A., Navrotsky, A., Paulmann, C., Škoda, R., Groat, L.A., Pöllmann, H., Beirau, T.: Mechanical and structural properties of radiation-damaged allanite-(Ce) and the effects of thermal annealing. Phys. Chem. Mineral. 46(10), 921–933 (2019)

    Article  ADS  Google Scholar 

  12. Hetherington, C.J., Jercinovic, M.J., Williams, M.L., Mahan, K.: Understanding geological processes with xenotime: composition, chronology, and a protocol for electron probe microanalysis. Chem. Geol. 254, 133–147 (2008)

    Article  ADS  Google Scholar 

  13. Welin, E., Blomqvist, G.: Age measurements on radioactive minerals from Sweden. Geol. Foren. Stock. For. 86, 33–50 (1964)

    Article  Google Scholar 

  14. Vladimirov, A.G., Ponomareva, A.P., Shokalskii, S.P., Khalilov, V.A., Kostitsyn, Y.A., Ponomarchuk, V.A., Rudney, S.N., Vystavnoi, S.A., Kruk, N.N., Titov, A.V.: Late Paleozoic early Mesozoic granitoid magmatism in Altai. Geol. Geofiz. 38, 715–729 (1997)

    Google Scholar 

  15. Gavryushkina, O.A., Travin, A.V., Kruk, N.N.: Duration of granitoid magmatism in peripheral parts of large igneous provinces (based on 40Ar/39Ar isotopic studies of Altai Permian-Triassic granitoids). Geodyn. Tectonophys. 8, 1035–1047 (2017)

    Article  Google Scholar 

  16. Firestone, R.B., Shirley, V.S.: Table of isotopes 2. Wiley, New York (1996)

    Google Scholar 

  17. Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., Kober, B.: Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib. Mineral. Petrol. 141, 125–144 (2001)

    Article  ADS  Google Scholar 

  18. Mørup, S., Both, E.: Interpretation of Mössbauer spectra with broadened lines. Nucl. Inst. Methods. 124, 445–448 (1975)

    Article  ADS  Google Scholar 

  19. Malczewski, D., Grabias, A.: 57Fe Mössbauer spectroscopy of radiation damaged Allanites. Acta Phys. Pol. A. 114, 1683–1690 (2008)

    Article  ADS  Google Scholar 

  20. Papunen, H., Lindsjö, O.: Apatite, monazite and allanite: three rare earth minerals from Korsnäs, Finland. Bul. Geol. Soc. Finl. 44, 123–129 (1972)

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - BE 5456/2-1. We thank Radek Škoda, Jan Cempírek, and the Fersman Mineralogy Museum for samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Eva Reissner.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reissner, C.E., Reissner, M., Kern, D. et al. Iron sites in radiation-damaged allanite-(Ce): the effects of thermally induced oxidation and structural reorganization. Hyperfine Interact 241, 18 (2020). https://doi.org/10.1007/s10751-019-1686-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1686-4

Keywords

Navigation