Characterization of a newly fallen Nigerian meteorite

X-ray diffraction (XRD), Fields Emission Scanning Electron Microscope (FE-SEM) with EDS and Mössbauer Spectroscopy (MS), were applied to investigate a newly fallen solid piece of debris named the Aba Panu meteorite, after a city in south western Nigeria (Lat: N 08° 14′ 25.7″ and Long: E 003° 33′ 47.0″). Matching X-ray diffraction results, together with the FE-SEM analysis confirms the presence of four kinds of iron-bearing minerals, namely olivine, pyroxene, kamacite (Fe-Ni alloys) and troilite (FeS). The Mössbauer spectra recorded at 295 K and 78 K consist of two strong paramagnetic doublets emanating from olivine of quadrupole splitting 2.9 mm/s and pyroxene of quadrupole splitting 2.1 mm/s. These are superimposed on two magnetic sub-spectra attributed to kamacite and troilite phases. From the Mössbauer sub-spectra absorption area, the ratio of the olivine absorption area to the pyroxene absorption area indicates that the meteorite can be classified as an L-ordinary chondrite. The mole fraction of the Fe end-member of olivine (fayalite) and the orthopyroxene (ferrosilite) calculated from the EDS data will be used to identify the petrographic type of the meteorite.

This is a preview of subscription content, access via your institution.


  1. 1.

    Smit, A.F.: Origin of Lake Bosumtwi (Ghana). Nature. 203, 179–180 (1964)

    ADS  Article  Google Scholar 

  2. 2.

    Jones, W.B., Bacon, M., Hastings, D.A.: The Lake Bosumtwi impact crater, Ghana. GSA Bulletin. 92(6), 342–349 (1981).<342:TLBICG>2.0.CO;2

    Article  Google Scholar 

  3. 3.

    Boamah, D., Koeberl C. The Lake Bosumtwi impact structure in Ghana: A brief environmental assessment and discussion of ecotourism potential. Meteoritics & Planetary Science 42, Nr 4/5, 561–567 (2007) Accessed 05 Nov 2019 at:

  4. 4.

    Mineral Development Agency, Oyo State Government Statement. 30 April 2018

  5. 5.

    International Society for Meteoritics and Planetary Science: Meteorological Bulletin Database, Reference MB107, 2019. Accessed on 02 Nov 2019 at:

  6. 6.

    Stennikov A.V., Fedulov V.S., Dushenko N.V., Naimushin S.G. and Voropaev S.A. 82nd Annual meeting of the Meteoritical society, LPI Contrib. No. 2157, 2019

  7. 7.

    Miller, M., Curk, U., Mirtic, B.: Geologija. 52/2, 183–192 (2009)

    Article  Google Scholar 

  8. 8.

    Morimoto, N., Fabrics, T., Furguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J. Nomenclature of pyroxenes. Can. Mineral. 27, 143–156 (1989)

  9. 9.

    Verma, H.C., Jee, K., Tripathi, R.P.: Meteorit. Planet. Sci. 38, 963–967 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    Gismelseed A.M, Khangi F, Ibrahim A, Yousif A. A., Wothing M. A., Rais A, Elzain M.E., Brooks C K, Sutherland H H, Hyper Inter 91, 551–555 1994

  11. 11.

    Abdu Y.A., Ericsson T., Meteoritics and Planetary Science 32, 373, 1997

  12. 12.

    Bancroft G M in: Mossbauer Spectroscopy an Introduction for Inorganic Chemists and Geochemists, McGraw-Hill, London 172 pp, 1973

  13. 13.

    Gismelseed A.M., Bashir S. A., Wothing M. A., Yousif A. A., Elzain M.E., Al-Rawas A.D., and Widatallah H.M., Meteoritics & Planetary Science 40, 255, 2005

  14. 14.

    Al-Rawas A.D., Gismelseed A.M., Al-Kathiri A.F., Elzain M.E., Yousif A.A., Al-Kathiri S.B., Widatallah H.M., and Abdalla S.B., Hyperfine Interactions 186, 105, 2008

  15. 15.

    Kruse O., Ericsson T., Physics and Chemistry of Minerals 15, 509, 1988

  16. 16.

    Grandjean F., Long G. J., Hautot D., and Whitney D.L., Hyp. Interact. 116, 105–115, 1998

  17. 17.

    Van Dongen Torman J., Jagnnathan R. and Trooster J.M., Hyperfine Interactions 1, 135 1975

  18. 18.

    Dodd R T, in Meteorites: A Petrological-Chemical Synthesis, Cambridge Uni. Press, Cambridge, U K 368 pp, 1981

  19. 19.

    Keil K., and Fredriksson K., J. Geophys. Res. 69, 3487–3515, 1964

  20. 20.

    Fredriksson K., Nelen J. and Fredriksson B.J., in: Origin and Distribution of the Elements, Ed. Ahrens, Pergamon, London-New York, 457–466 1968

  21. 21.

    Gismelseed A.M., Abdu Y.A., Shaddad M.H., Verma H.C. and Jenniskens P., Meteoritics Planetary Science 49, 1485–1493, 2014

  22. 22.

    Oshtrakh M.I., Petrova E.V., Grokhovsky V.I. and Semionkin V.A, Meteorit. Planet. Sci. 43, 941–958, 2008

Download references


This work has been carried out at the Physics Department, College of Science, Sultan Qaboos University. Thanks are due to the Central Analytical & Applications Research Unit (CAARU). Thanks are also due to Mr. Saif Al-Maamari of CAARU and Dr. Myo Tay Zar Myint of the Surface Lab. Mr. Hamyar Nasser Al-Shukeili is acknowledged for his help in producing the figures. Our sincere thanks go to the Mineral Development Agency, Oyo State Government, for making the meteorite fragments available to the Geology Department, University of Ibadan, Nigeria.

Author information



Corresponding author

Correspondence to Abbasher Gismelssed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gismelssed, A., Okunlola, O., Al-Rawas, A. et al. Characterization of a newly fallen Nigerian meteorite. Hyperfine Interact 241, 13 (2020).

Download citation


  • Meteorites
  • Ordinary chondrite
  • Kamacite
  • Mössbauer
  • FE-SEM
  • Petrologic type