Synthesis and Mössbauer study of anomalous magnetic behavior of Fe2O3 nanoparticle-montmorillonite nanocomposites


In ensembles of single-domain magnetic nanoparticles, a magnetic-dipole interaction between particles takes place. The controlled assembly of bulk magnetically ordered materials from such nanoparticles opens up wide prospects for the creation of new magnetic materials. One of the classical methods for obtaining an ordered ensemble of nanoparticles is their synthesis in a matrix of clay minerals such as montmorillonite. The interlayer space of the mineral acts as a nanoreactor with specific conditions for the particle synthesis. Intercalating iron polycations into montmorillonite, one can obtain well-ordered ensembles of magnetic nanoparticles. Magnetic nanocomposites created in this way have new properties and exhibit non-standard magnetic behavior, which cannot always be described in terms of classical concepts. We used the capabilities of Mössbauer relaxation spectroscopy to study magnetic nanocomposites in order to study the structural and magnetic features of nanoparticles formed in aluminosilicate layers “from the inside”. An analysis of the Mössbauer spectra revealed that ordered ensembles of antiferromagnetic α-Fe2O3 nanoparticles formed between aluminosilicate layers of montmorillonite exhibited ferromagnetic behavior.

This is a preview of subscription content, access via your institution.


  1. 1.

    Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46(8), 1222–1244 (2007)

    Article  Google Scholar 

  2. 2.

    Pankhurst, Q.A., et al.: Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 42(22), 224001 (2009)

    ADS  Article  Google Scholar 

  3. 3.

    Colombo, M., Carregal-Romero, S., Casula, M.F., Gutiérrez, L., Morales, M.P., Böhm, I.B., Heverhagen, J.T., Prosperi, D., Parak, W.J.: Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41(11), 4306–4334 (2012)

    Article  Google Scholar 

  4. 4.

    Mohammed, L., et al.: Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology. 30, 1–14 (2017)

    Article  Google Scholar 

  5. 5.

    Tang, S.C., Lo, I.M.: Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 47(8), 2613–2632 (2013)

    Article  Google Scholar 

  6. 6.

    Jones, N.: Materials science: the pull of stronger magnets. Nature News. 472(7341), 22–23 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science. 287(5457), 1466–1468 (2000)

    ADS  Article  Google Scholar 

  8. 8.

    Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 420, 395–398 (2002)

    ADS  Article  Google Scholar 

  9. 9.

    Brindley, G.W., et al.: Preparation and properties of some hydroxy-aluminium beidellites. Clay Miner. 12(3), 229–237 (1977)

    ADS  Article  Google Scholar 

  10. 10.

    Lahav N, et al. Cross-linked (1978) Smectites. I. Synthesis and properties of hydroxy-aluminum-montmorillonite. Clay Clay Miner. 26(2):107–15

  11. 11.

    Bergaya, F., et al.: Surface modification of clay minerals. Appl. Clay Sci. 1(19), 1–3 (2001)

    Article  Google Scholar 

  12. 12.

    Xi Y. et al. (2005) Modification of Wyoming montmorillonite surfaces using a cationic surfactant. Langmuir. Sep 13;21(19):8675-80

  13. 13.

    Ooka C, et al. (2003) Adsorptive and photocatalytic performance of TiO2 pillared montmorillonite in degradation of endocrine disruptors having different hydrophobicity. Applied Catalysis B: Environmental. 20;41(3):313-21

  14. 14.

    Tomul, F., et al.: Adsorption and catalytic properties of Fe/Cr-pillared bentonites. Chem. Eng. J. 185, 380–390 (2012)

    Article  Google Scholar 

  15. 15.

    Bineesh, K.V., et al.: Synthesis of metal-oxide pillared montmorillonite clay for the selective catalytic oxidation of H2S. Journal of Ind. Eng. Chem. 16(4), 593–597 (2010)

    Article  Google Scholar 

  16. 16.

    Rao, F., et al.: Synthesis and characterization of Ag-PILC through the formation of Ag@ montmorillonite nanocomposite. Nano. 10(02), 1550031 (2015)

    Article  Google Scholar 

  17. 17.

    Yuan, P., et al.: Synthesis and characterization of delaminated iron-pillared clay with meso–microporous structure. Microporous Mesoporous Mater. 88(1–3), 8–15 (2006)

    Article  Google Scholar 

  18. 18.

    Chen, L., et al.: Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications. Applied Clay Science. 127, 143–163 (2016)

    ADS  Article  Google Scholar 

  19. 19.

    Son, Y.H., et al.: Structure−property correlation in iron oxide nanoparticle−clay hybrid materials. Chem. Mater. 22(7), 2226–2232 (2010)

    Article  Google Scholar 

  20. 20.

    Doff, D.H., et al.: Preparation and characterization of iron oxide pillared montmorillonite. Clay Miner. 23(4), 367–377 (1988)

    ADS  Article  Google Scholar 

  21. 21.

    Dousma, J., et al.: Hydrolysis—precipitation studies of iron solutions. II. Aging studies and the model for precipitation from Fe (III) nitrate solutions. J. Colloid Interface Sci. 64(1), 154–170 (1978)

    ADS  Article  Google Scholar 

  22. 22.

    Combes, J.M., et al.: Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscdpy: I. hydrolysis and formation of ferric gels. Geochim. Cosmochim. Acta. 53(3), 583–594 (1989)

    ADS  Article  Google Scholar 

  23. 23.

    Chuev, M.A.: Excitation spectrum and magnetic dynamics of antiferromagnetic nanoparticles in Mössbauer spectroscopy. JETP Lett. 99(5), 278–282 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    Chuev M. A. (2017) Excitation spectrum of the Néel ensemble of antiferromagnetic nanoparticles as revealed in Mössbauer spectroscopy. Advances in Condensed Matter Physics, V.2017, ID 6209206

  25. 25.

    Chuev, M.A.: Novel models of magnetic dynamics for characterization of nanoparticles biodegradation in a body from Mössbauer and magnetization measurements. J. Magn. Magn. Mater. 470, 12–17 (2019)

    ADS  Article  Google Scholar 

  26. 26.

    Amin, N., et al.: Morin temperature of annealed submicronic α-F2O3 particles. Phys. Rev. B. 35(10), 4810 (1987)

    ADS  Article  Google Scholar 

  27. 27.

    Jacob, J., et al.: VSM and Mössbauer study of nanostructured hematite. J. Magn. Magn. Mater. 322(6), 614–621 (2010)

    ADS  Article  Google Scholar 

  28. 28.

    Chuev, M.A., et al.: Novel insight into the effect of disappearance of the Morin transition in hematite nanoparticles. JETP Lett. 105(11), 700–705 (2017)

    ADS  Article  Google Scholar 

  29. 29.

    Sun, K., et al.: The Mössbauer study of α-Fe2O3 fine particles with and without adsorbed cobalt. Phys. Status Solidi A. 115(2), 539–546 (1989)

    ADS  Article  Google Scholar 

  30. 30.

    Davar, F., et al.: Single-phase hematite nanoparticles: non-alkoxide sol–gel based preparation, modification and characterization. Ceram. Int. 42(16), 19336–19342 (2016)

    Article  Google Scholar 

  31. 31.

    Dai, Y.D., et al.: Thermal decomposition of iron oxychloride as studied by thermal analysis, X-ray diffraction and Mössbauer spectroscopy. Mater. Chem. Phys. 79(1), 94–97 (2003)

    Article  Google Scholar 

  32. 32.

    Singh, L.H., et al.: Atomic scale study of thermal reduction of nano goethite coexisting with magnetite. AIP Adv. 3(2), 022101 (2013)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Raul Gabbasov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabbasov, R., Yurenya, A., Cherepanov, V. et al. Synthesis and Mössbauer study of anomalous magnetic behavior of Fe2O3 nanoparticle-montmorillonite nanocomposites. Hyperfine Interact 241, 9 (2020).

Download citation


  • Mössbauer spectroscopy
  • Magnetic nanoparticles
  • Intercalation
  • Montmorillonite
  • Antiferromagnetic nanoparticles