Mössbauer spectroscopy study of Y-type Hexaferrite (Ba2Co2Fe12O22) prepared by the co-precipitation method


In this work we report the results of structural and Mössbauer spectroscopy studies for Ba2Co2Fe12O22 samples prepared by coprecipitation following two different synthesis routes: route A (pH = 10, NaOH + Na2CO3 added dropwise), and route B (pH = 14, NaOH + Na2CO3 added one shot). The resulting powders were sintered for 4 h at different temperatures (700 °C to 1100 °C in steps of 100 °C). The sintered powders were characterized by x-ray diffraction (XRD) and room temperature Mössbauer spectroscopy. XRD and Mössbauer results of the sample prepared by route A and sintered at 700 °C revealed formation of spinel phases (CoFe2O4 and/or Fe3O4), BaCO3 and BaM-type phase. The Co2Y phase developed in the samples sintered at 800 °C and 900 °C with spinel species as impurities, and single (pure) Co2Y phase was obtained at higher temperatures. On contrast, XRD patterns and the Mössbauer spectra for the samples prepared by route B showed different results, where the sample sintered at 700 °C consisted of only spinel phases. The Co2Y phase developed at higher temperatures, coexisting with significant amounts of other phases.

This is a preview of subscription content, log in to check access.


  1. 1.

    Smit, J., Wijn, H.P.J.: Ferrites. Wiley, New York (1959)

    Google Scholar 

  2. 2.

    Chikazumi, S.: Physics of Ferromagnetism 2e, 2nd edn. Oxford University Press, Oxford (2009)

    Google Scholar 

  3. 3.

    Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  4. 4.

    Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    Özgür, Ü., Alivov, Y., Morkoç, H.: Microwave ferrites, part 1: fundamental properties. J. Mater. Sci. Mater. Electron. 20, 789–834 (2009)

    Article  Google Scholar 

  6. 6.

    Mahmood, S.H.: Permanent magnet applications. In: Mahmood, S.H., Abu-Aljarayesh, I. (eds.) Hexaferrite Permanent Magnetic Materials, pp. 153–165. Materials Research Forum LLC, Millersville (2016)

    Google Scholar 

  7. 7.

    Nicolas, J.: Microwave ferrites. In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, pp. 243–296. North-Holland Publishing Company, New York (1980)

    Google Scholar 

  8. 8.

    Topal, U., Bakan, H.I.: Permanently magnetic BaFe12O19 foams: synthesis and characterization. Mater. Chem. Phys. 123, 121–124 (2010)

    Article  Google Scholar 

  9. 9.

    Hongya, Y., Zhengyi, L., Dechang, Z.: Microstructure of pre-sintered permanent magnetic strontium ferrite powder. Rare Metals. 25, 572–577 (2006)

    Google Scholar 

  10. 10.

    Kubo, O., Ido, T., Yokoyama, H.: Properties of Ba ferrite particles for perpendicular magnetic recording media. IEEE Trans. Magn. 18, 1122–1124 (1982)

    ADS  Article  Google Scholar 

  11. 11.

    Speliotis, D.: Barium ferrite magnetic recording media. IEEE Trans. Magn. 23, 25–28 (1987)

    ADS  Article  Google Scholar 

  12. 12.

    Taniguchi, K., Abe, N., Ohtani, S., Umetsu, H., Arima, T.-h.: Ferroelectric polarization reversal by a magnetic field in multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Appl. Phys. Express. 1, 031301 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    Lee, H.B., Chun, S.H., Shin, K.W., Jeon, B.-G., Chai, Y.S., Kim, K.H., Schefer, J., Chang, H., Yun, S.-N., Joung, T.-Y.: Heliconical magnetic order and field-induced multiferroicity of the Co2Y-type hexaferrite Ba0.3Sr1.7Co2Fe12O22. Phys. Rev. B. 86, 094435 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    Tokura, Y., Seki, S.: Multiferroics with spiral spin orders. Adv. Mater. 22, 1554–1565 (2010)

    Article  Google Scholar 

  15. 15.

    Tabatabaie, F., Fathi, M., Saatchi, A., Ghasemi, A.: Effect of Mn–co and co–Ti substituted ions on doped strontium ferrites microwave absorption. J. Alloys Compd. 474, 206–209 (2009)

    Article  Google Scholar 

  16. 16.

    Sharma, S., Daya, K., Sharma, S., Batoo, K.M., Singh, M.: Sol–gel auto combustion processed soft Z-type hexa nanoferrites for microwave antenna miniaturization. Ceram. Int. 41, 7109–7114 (2015)

    Article  Google Scholar 

  17. 17.

    Geiler, A., Daigle, A., Wang, J., Chen, Y., Vittoria, C., Harris, V.: Consequences of magnetic anisotropy in realizing practical microwave hexaferrite devices. J. Magn. Magn. Mater. 324, 3393–3397 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    Mahmood, S.H.: Ferrites with high magnetic parameters. In: Mahmood, S.H., Abu-Aljarayesh, I. (eds.) Hexaferrite Permanent Magnetic Materials, pp. 111–152. Materials Research Forum LLC, Millersville (2016)

    Google Scholar 

  19. 19.

    Mahmood, S.H., Bsoul, I.: Tuning the magnetic properties of M-type hexaferrites. In: Jotania, R.B., Mahmood, S.H. (eds.) Magnetic Oxides and Composites, pp. 49–100. Materials Research Forum LLC, Millersville (2018)

    Google Scholar 

  20. 20.

    Topal, U.: A simple synthesis route for high quality BaFe12O19 magnets. Mater. Sci. Eng. B. 176, 1531–1536 (2011)

    Article  Google Scholar 

  21. 21.

    Topal, U.: Towards further improvements of the magnetization parameters of B2O3-doped BaFe12O19 particles: etching with hydrochloric acid. J. Supercond. Nov. Magn. 25, 1485–1488 (2012)

    Article  Google Scholar 

  22. 22.

    Sözeri, H., Durmuş, Z., Baykal, A., Uysal, E.: Preparation of high quality, single domain BaFe12O19 particles by the citrate sol–gel combustion route with an initial Fe/Ba molar ratio of 4. Mater. Sci. Eng. B. 177, 949–955 (2012)

    Article  Google Scholar 

  23. 23.

    Han, M., Ou, Y., Chen, W., Deng, L.: Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol–gel method with and without polyethylene glycol added. J. Alloys Compd. 474, 185–189 (2009)

    Article  Google Scholar 

  24. 24.

    Dursun, S., Topkaya, R., Akdoğan, N., Alkoy, S.: Comparison of the structural and magnetic properties of submicron barium hexaferrite powders prepared by molten salt and solid state calcination routes. Ceram. Int. 38, 3801–3806 (2012)

    Article  Google Scholar 

  25. 25.

    Kim, D.-H., Lee, Y.-K., Kim, K.-M., Kim, K.-N., Choi, S.-Y., Shim, I.-B.: Synthesis of Ba-ferrite microspheres doped with Sr for thermoseeds in hyperthermia. J. Mater. Sci. 39, 6847–6850 (2004)

    ADS  Article  Google Scholar 

  26. 26.

    Pullar, R., Bhattacharya, A.: The magnetic properties of aligned M hexa-ferrite fibres. J. Magn. Magn. Mater. 300, 490–499 (2006)

    ADS  Article  Google Scholar 

  27. 27.

    Alsmadi, A., Bsoul, I., Mahmood, S., Alnawashi, G., Al-Dweri, F., Maswadeh, Y., Welp, U.: Magnetic study of M-type Ru-Ti doped strontium hexaferrite nanocrystalline particles. J. Alloys Compd. 648, 419–427 (2015)

    Article  Google Scholar 

  28. 28.

    Palomino, R., Miró, A.B., Tenorio, F., De Jesús, F.S., Escobedo, C.C., Ammar, S.: Sonochemical assisted synthesis of SrFe12O19 nanoparticles. Ultrason. Sonochem. 29, 470–475 (2016)

    Article  Google Scholar 

  29. 29.

    Singhal, S., Namgyal, T., Singh, J., Chandra, K., Bansal, S.: A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M= Sr, Ba and Pb) hexaferrites with different morphologies. Ceram. Int. 37, 1833–1837 (2011)

    Article  Google Scholar 

  30. 30.

    Guerrero-Serrano, A., Pérez-Juache, T., Mirabal-García, M., Matutes-Aquino, J., Palomares-Sánchez, S.: Effect of barium on the properties of lead hexaferrite. J. Supercond. Nov. Magn. 24, 2307–2312 (2011)

    Article  Google Scholar 

  31. 31.

    Mahmood, S.H., Zaqsaw, M.D., Mohsen, O.E., Awadallah, A., Bsoul, I., Awawdeh, M., Mohaidat, Q.I.: Modification of the magnetic properties of Co2Y hexaferrites by divalent and trivalent metal substitutions. Solid State Phenom. 241, 93–125 (2016)

    Article  Google Scholar 

  32. 32.

    Ali, I., Islam, M., Awan, M., Ahmad, M.: Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route. J. Alloys Compd. 547, 118–125 (2013)

    Article  Google Scholar 

  33. 33.

    Awawdeh, M., Al-Bashaireh, R., Lehlooh, A., Mahmood, S.: Structural and Mossbauer studies of ball milled Co-Zn Y-type hexaferrites. Jordan J. Phys. 7, 85–98 (2014)

    Google Scholar 

  34. 34.

    Dahal, J., Wang, L., Mishra, S., Nguyen, V., Liu, J.: Synthesis and magnetic properties of SrFe12−xyAlxCoyO19 nanocomposites prepared via autocombustion technique. J. Alloys Compd. 595, 213–220 (2014)

    Article  Google Scholar 

  35. 35.

    Kazin, P., Trusov, L., Zaitsev, D., Tretyakov, Y.D., Jansen, M.: Formation of submicron-sized SrFe12− xAlxO19 with very high coercivity. J. Magn. Magn. Mater. 320, 1068–1072 (2008)

    ADS  Article  Google Scholar 

  36. 36.

    Mahmood, S.H., Jaradat, F.S., Lehlooh, A.F., Hammoudeh, A.: Structural properties and hyperfine interactions in co-Zn Y-type hexaferrites prepared by sol-gel method. Ceram. Int. 40, 5231–5236 (2014)

    Article  Google Scholar 

  37. 37.

    Albanese, G., Deriu, A.: Magnetic properties of Al, Ga, Sc, In substituted barium ferrites: a comparative analysis. Ceram. Int. 5, 3–10 (1979)

    Article  Google Scholar 

  38. 38.

    Mazumdar, S.C., Hossain, A.A.: Synthesis and magnetic properties of Ba2Ni2–xZnxFe12O22. World J. Condens. Matter. Phys. 2, 181–187 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    Bai, Y., Zhou, J., Gui, Z., Li, L.: Magnetic properties of Cu, Zn-modified Co2Y hexaferrites. J. Magn. Magn. Mater. 246, 140–144 (2002)

    ADS  Article  Google Scholar 

  40. 40.

    Albanese, G.: Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods. Le Journal de Physique Colloques. 38, 85–94 (1977)

    Article  Google Scholar 

  41. 41.

    Khanduri, H., Dimri, M.C., Kooskora, H., Heinmaa, I., Viola, G., Ning, H., Reece, M., Krustok, J., Stern, R.: Structural, dielectric, magnetic, and nuclear magnetic resonance studies of multiferroic Y-type hexaferrites. J. Appl. Phys. 112, 073903 (2012)

    ADS  Article  Google Scholar 

  42. 42.

    Sagayama, H., Taniguchi, K., Abe, N., Arima, T.-h., Nishikawa, Y., Yano, S.-i., Kousaka, Y., Akimitsu, J., Matsuura, M., Hirota, K.: Two distinct ferroelectric phases in the multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Phys. Rev. B. 80, 180419 (2009)

    ADS  Article  Google Scholar 

  43. 43.

    Bai, Y., Zhou, J., Gui, Z., Yue, Z., Li, L.: Preparation and magnetic characterization of Y-type hexaferrites containing zinc, cobalt and copper. Mater. Sci. Eng. B. 99, 266–269 (2003)

    Article  Google Scholar 

  44. 44.

    Collins, E.D, Voit, S.L, and Vedder, R.J.: Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials. United States: N. p., 2011. https://doi.org/10.2172/1024695.

  45. 45.

    Hsiang, H.-I., Yao, R.-Q.: Hexagonal ferrite powder synthesis using chemical coprecipitation. Mater. Chem. Phys. 104, 1–4 (2007)

    Article  Google Scholar 

  46. 46.

    Aneesh Kumar, K.S., Bhowmik, R.N., Mahmood, S.H.: Role of pH value durinh chemical reaction, and site occupancy of Ni2+ and Fe3+ ions in spinel structure for tuning room temperature magnetic properties in Ni1.5Fe1.5O4 ferrite. J. Magn. Magn. Mater. 406, 60–71 (2016)

    ADS  Article  Google Scholar 

  47. 47.

    Warren, B.E.: X-Ray Diffraction. Addison-Wesley, Reading (1969)

    Google Scholar 

  48. 48.

    Evans, B., Grandjean, F., Lilot, A., Vogel, R., Gerard, A.: 57Fe hyperfine interaction parameters and selected magnetic properties of high purity MFe12O19 (M= Sr, Ba). J. Magn. Magn. Mater. 67, 123–129 (1987)

    ADS  Article  Google Scholar 

  49. 49.

    Awadallah, A., Mahmood, S.H., Maswadeh, Y., Bsoul, I., Awawdeh, M., Mohaidat, Q.I., Juwhari, H.: Structural, magnetic, and Mossbauer spectroscopy of cu substituted M-type hexaferrites. Mater. Res. Bull. 74, 192–201 (2016)

    Article  Google Scholar 

  50. 50.

    Daigle, A., DuPre, E., Geiler, A., Chen, Y., Parimi, P.V., Vittoria, C., Harris, V.G.: Preparation and characterization of pure-phase Co2Y ferrite powders via a scalable aqueous Coprecipitation method. J. Am. Ceram. Soc. 93, 2994–2997 (2010)

    Article  Google Scholar 

  51. 51.

    Lisjak, D., Drofenik, M.: The low-temperature formation of barium hexaferrites. J. Eur. Ceram. Soc. 26, 3681–3686 (2006)

    Article  Google Scholar 

  52. 52.

    Aphesteguy, J.C., Jacobo, S.E., Schegoleva, N., Kurlyandskaya, G.: Characterization of nanosized spinel ferrite powders synthesized by coprecipitation and autocombustion method. J. Alloys Compd. 495, 509–512 (2010)

    Article  Google Scholar 

  53. 53.

    D. Kovacheva, T. Ruskov, P. Krystev, S. Asenov, N. Tanev, I. Mönch, R. Koseva, U. Wolff, T. Gemming, M. Markova-Velichkova, Synthesis and characterization of magnetic nano-sized Fe3O4 and CoFe2O4, Bulgarian Chemical Communications Proceedings of the III rd National Crystallographic Symposium, 2012, pp. 90–97

  54. 54.

    Mukasyan, A., Dinka, P.: Novel approaches to solution-combustion synthesis of nanomaterials. Int. J. Self-Propag. High-Temp. Synth. 16, 23–35 (2007)

Download references


The authers acknowledge the contribution of Prof. I. Bsoul at Al al-Bayt University in the Rietveld refinement analysis. The Financial support of the Deanship of Scientific Research and Graduate Studies at Yarmouk University is acknowledged. A-F. Lehlooh appreciates the full support of Yarmouk University to attend ICAME 2019 in Dalian.

Author information



Corresponding author

Correspondence to Abdel-Fatah Lehlooh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehlooh, AF., Alghazo, R., Rawwagah, F. et al. Mössbauer spectroscopy study of Y-type Hexaferrite (Ba2Co2Fe12O22) prepared by the co-precipitation method. Hyperfine Interact 241, 12 (2020). https://doi.org/10.1007/s10751-019-1676-6

Download citation


  • Ba2Co2Fe12O22
  • Y-type hexaferrite
  • X-ray diffraction
  • Coprecipitation
  • Mössbauer spectroscopy
  • Sintering