Skip to main content
Log in

Preparation and characterization of spin crossover thin solid films

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Iron(II) spin crossover complexes display a reversible transition from low-spin (LS) state to high-spin (HS) state by e.g. variation of temperature, pressure or by irradiation with light. Therefore, these systems are promising candidates for information storage materials. In view of practical device applications thin films of these materials are needed. The SCO-compound [Fe(Htrz)2(trz)] (BF4) (1) switches between the LS and the HS state with a 50 K wide thermal hysteresis loop above room temperature. We have prepared thin films of 1 on a SiO2 substrate by spin coating. The spin states of the films have been characterized by Mössbauer spectroscopy in reflection mode using a MIMOS II spectrometer. A low quadrupole splitting (LS state) at 300 K and a high quadrupole splitting (HS state) at 400 K were found for the film, as well as for bulk powder of 1. This confirms that a spin crossover occurs above room temperature. Furthermore, synchrotron based nuclear resonance scattering measurements from 80 K to 400 K indicate that the hyperfine parameters are similar to those of the bulk powder of 1. DFT calculations reproduce the experimentally determined Fe-vibrational density of states of the bulk and of the thin film sample of 1. These results indicate that a higher fraction of HS Fe atoms is present in the film of 1. Therefore, we conclude different SCO properties of the thin film and the bulk material of 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cambi, L., Szegö, L.: Über die magnetische Susceptibilität der komplexen Verbindungen. Ber. dtsch. Chem. Ges. A/B. (1931). https://doi.org/10.1002/cber.19310641002

    Article  Google Scholar 

  2. Gütlich, P., Hauser, A., Spiering, H.: Thermisch und optisch schaltbare Eisen(II)-Komplexe. Angew. Chem. (1994). https://doi.org/10.1002/ange.19941062006

    Article  Google Scholar 

  3. Šalitroš, I., Madhu, N.T., Boča, R., Pavlik, J., Ruben, M.: Room-temperature spin-transition iron compounds. Monatshefte fr Chemie / Chemical Monthly. 140, 695–733 (2009). https://doi.org/10.1007/s00706-009-0128-4

    Article  Google Scholar 

  4. Kahn, O.: Spin-transition polymers: from molecular materials toward memory devices. Science. (1998). https://doi.org/10.1126/science.279.5347.44

    Article  ADS  Google Scholar 

  5. Linares, J., Codjovi, E., Garcia, Y.: Pressure and temperature spin crossover sensors with optical detection. Sensors (Basel, Switzerland). (2012). https://doi.org/10.3390/s120404479

    Article  Google Scholar 

  6. Etrillard, C., Faramarzi, V., Dayen, J.-F., Letard, J.-F., Doudin, B.: Photoconduction in Fe(Htrz)2(trz)(BF4)·H2O nanocrystals. Chem. Commun. (Camb.). (2011) https://doi.org/10.1039/C1CC11441G

    Article  Google Scholar 

  7. Kroeber, J., Audiere, J.-P., Claude, R., Codjovi, E., Kahn, O., Haasnoot, J.G., Groliere, F., Jay, C., Bousseksou, A.: Spin transitions and thermal hysteresis in the molecular-based materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2H2O (Htrz = 1,2,4-4H-triazole; trz = 1,2,4-triazolato). Chem. Mater. (1994). https://doi.org/10.1021/cm00044a044

    Article  Google Scholar 

  8. Jenni, K., Scherthan, L., Faus, I., Marx, J., Strohm, C., Herlitschke, M., Wille, H.-C., Würtz, P., Schünemann, V., Wolny, J.A.: Nuclear inelastic scattering and density functional theory studies of a one-dimensional spin crossover Fe(1,2,4-triazole)2(1,2,4-triazolato)(BF4) molecular chain. Physical Chemist. Chem. Physics: PCCP. (2017). https://doi.org/10.1039/C7CP03690F

    Article  Google Scholar 

  9. Aromí, G., Barrios, L.A., Roubeau, O., Gamez, P.: Triazoles and tetrazoles: prime ligands to generate remarkable coordination materials. Coord. Chem. Rev. (2011). https://doi.org/10.1016/j.ccr.2010.10.038

    Article  Google Scholar 

  10. Cavallini, M.: Status and perspectives in thin films and patterning of spin crossover compounds. Phys. Chem. Chem. Phys. (2012). https://doi.org/10.1039/C2CP40879A

    Article  Google Scholar 

  11. Klingelhöfer, G., Morris, R.V., Bernhardt, B., Rodionov, D., de Souza, P.A., Squyres, S.W., Foh, J., Kankeleit, E., Bonnes, U., Gellert, R., Schröder, C., Linkin, S., Evlanov, E., Zubkov, B., Prilutski, O.: Athena MIMOS II Mössbauer spectrometer investigation. J.-Geophys.-Res. (2003). https://doi.org/10.1029/2003JE002138

  12. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT (2013)

  13. Salomon, O., Reiher, M., Hess, B.A.: Assertion and validation of the performance of the B3LYP⋆ functional for the first transition metal row and the G2 test set. J. Chem. Phys. (2002). https://doi.org/10.1063/1.1493179

    Article  ADS  Google Scholar 

  14. Stevens, W.J., Basch, H., Krauss, M.: Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J. Chem. Phys. (1984). https://doi.org/10.1063/1.447604

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through SFB/TRR 173 SPIN+X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Hochdörffer.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference of the Application of the Mössbauer Effect (ICAME 2019) held in Dalian, China, 1-6 September 2019

Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Electronic supplementary material

ESM 1

(DOCX 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochdörffer, T., Wolny, J.A., Scherthan, L. et al. Preparation and characterization of spin crossover thin solid films. Hyperfine Interact 240, 116 (2019). https://doi.org/10.1007/s10751-019-1671-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1671-y

Keywords

Navigation