Beta-NMR of short-lived nucleus 17N in liquids

Abstracts

The β-ray detected nuclear magnetic resonance (β-NMR) of a short lived-nucleus 17N (I = 1/2, T1/2 = 4.173 s) in liquid H2O and CH3NO2 has been performed. A π-pulse method was applied to obtain sharp NMR lines, from which the ratio of the Larmor frequencies of 17N in CH3NO2 and 1H was determined to be ν[17N in CH3NO2]/ν[1H2O] = 0.1265751 ± 0.0000019. Two resonance lines were observed for 17N in H2O with the relative frequency shifts of –(2.33 ± 0.37) × 10−4 and (2.91 ± 0.27) × 10−4 referenced to 17N in CH3NO2.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Asahi, K., Matsuta, K.: Nuclear electromagnetic moments. β-NMR and its applications. Nucl. Phys. A. 693, 63–76 (2001)

    ADS  Article  Google Scholar 

  2. 2.

    Neyens, G.: Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei. Rep. Prog. Phys. 66, 633–689 (2003)

    ADS  Article  Google Scholar 

  3. 3.

    McFarlane, W.A.: Implanted-ion βNMR: a new probe for nanoscience. Solid State Nucl. Magn. Reson. 68-69, 1–12 (2015)

    Article  Google Scholar 

  4. 4.

    Szunyogh, D., McFadden, R.M.L., Karner, V.L., Chatzichristos, A., Goodacre, T.D., Dehn, M.H., Formenti, L., Fujimoto, D., Gottberg, A., Kallenberg, E., Kálomista, I., Kiefl, R.F., Larsen, F.H., Lassen, J., Levy, C.D.P., Li, R., MacFarlane, W.A., McKenzie, I., Morris, G.D., Pallada, S., Pearson, M.R., Sauer, S.P.A., Schaffer, P., Thulstrup, P.W., Hemmingsen, L., Stachura, M.: Direct observation of Mg2+ complexes in ionic liquid solutions by 31Mg β-NMR spectroscopy. Dalton Trans. 47, 14431–14435 (2018)

    Article  Google Scholar 

  5. 5.

    Jancso, A., Correia, J.G., Gottberg, A., Schell, J., Stachura, M., Szunyogh, D., Pallada, S., Lupascu, D.C., Kowalska, M., Hemmingsen, L.: TDPAC and β-NMR applications in chemistry and biochemistry. J. Phys. G: Nucl. Part. Phys. 44, 64003 (2017)

    Article  Google Scholar 

  6. 6.

    Sugihara, T., Mihara, M., Shimaya, J., Matsuta, K., Fukuda, M., Ohno, J., Tanaka, M., Yamaoka, S., Watanabe, K., Iwakiri, S., Yanagihara, R., Tanaka, Y., Du, H., Onishi, K., Kambayashi, S., Minamisono, T., Nishimura., D., Izumikawa, T., Ozawa, A., Ishibashi, Y., Kitagawa, A., Sato, S., Torikoshi, M., Momota, S.: NMR detection of short-lived β-emitter 12N implanted in water. Hyperfine Interactions 238, 20 (2017)

  7. 7.

    Gottberg, A., Stachura, M., Kowalska, M., Bissell, M.L., Arcisauskaite, V., Blaum, K., Helmke, A., Johnston, K., Kreim, K., Larsen, F.H., Neugart, R., Neyens, G., Ruiz, R.F.G., Szunyogh, D., Thulstrup, P.W., Yordanov, D.T., Hemmingsen, L.: Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution. ChemPhysChem. 15, 3929–3932 (2014)

    Article  Google Scholar 

  8. 8.

    Stone, N.J.: Table of nuclear magnetic dipole and electric quadrupole moments. At. Data Nucl. Data Tables. 90, 75–176 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    Levy, G.C., Lichter, R.L.: Nitrogen-15 nuclear magnetic resonance spectroscopy. John Wiley & Sons, Inc, New York (1979)

    Google Scholar 

  10. 10.

    De Rydt, M., Balabanski, D.L., Daugas, J.M., Himpe, P., Kameda, D., Lozeva, R., Morel, P., Perrot, L., Shimada, K., Stödel, C., Sugimoto, T., Thomas, J.C., Ueno, H., Vermeulen, N., Vingerhoets, P., Yoshimi, A., Neyens, G.: g factor of 17N and 18N remeasured. Phys. Rev. C. 80, 037306 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    Kanazawa, M., Kitagawa, A., Kouda, S., Nishio, T., Torikoshi, M., Noda, K., Murakami, T., Sato, S., Suda, M., Tomitani, T., Kanai, T., Futami, Y., Shinbo, M., Urakabe, E., Iseki, Y.: Present status of secondary beam courses in HIMAC. Nucl. Phys. A. 746, 393c–396c (2004)

    ADS  Article  Google Scholar 

  12. 12.

    Dietrich, O.: Diffusion Coefficients of Water. https://dtrx.de/od/diff/. Accessed 17 Oct 2002

  13. 13.

    O'Reilly, D.E., Peterson, E.M.: Self-diffusion coefficients and rotational correction times in polar liquids. II. J. Chem. Phys. 55, 2155–2163 (1971)

    ADS  Article  Google Scholar 

  14. 14.

    Keller, P.: Vaules of Gyromagnetic Ratios. https://www.metrolab.com/wp-content/uploads/2017/03/Values-of-Gyromagnetic-Ratios.pdf (2017). Accessed 08 March 2017

  15. 15.

    Ozawa, A., Matsuta, K., Nagatomo, T., Mihara, M., Yamada, K., Yamaguchi, T., Ohtsubo, T., Momota, S., Izumikawa, T., Sumikama, T., Nakashima, Y., Fujiwara, H., Kumashiro, S., Matsumiya, R., Ota, M., Shinojima, D., Tanaka, H., Yasuno, T., Nakajima, S., Suzuki, T., Yoshida, K., Muranaka, K., Maemura, T., Chiba, A., Utsuno, Y., Fukuda, M., Tanaka, K., Tanihata, I., Nojiri, Y., Minamisono, T., Alonso, J.R., Krebs, G.F., Symons, T.J.M.: Measurement of the spin and magnetic moment of 23Al. Phys. Rev. C. 74, 021301R (2006)

    ADS  Article  Google Scholar 

  16. 16.

    Brevard, C., Granger, P.: Handbook of High Resolution Multinuclear NMR. John Wiley & Sons, Inc, New York (1981)

    Google Scholar 

Download references

Acknowledgements

The work was performed under the Research Project with Heavy Ions at NIRS-HIMAC. The work was supported by JSPS KAKENHI Grant Number JP18K11920.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mototsugu Mihara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019

Edited by S. N. Mishra, P. L. Paulose and R. Palit

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mihara, M., Sugihara, T., Fukuda, M. et al. Beta-NMR of short-lived nucleus 17N in liquids. Hyperfine Interact 240, 113 (2019). https://doi.org/10.1007/s10751-019-1650-3

Download citation

Keywords

  • β-NMR in liquids
  • Nitrogen
  • Implantation
  • Chemical shift
  • H2O
  • CH3NO2