Comparison of the 57Fe hyperfine interactions in silicate phases in Sariçiçek howardite and some ordinary chondrites

Abstract

Silicate crystals have different thermal history in non-differentiated and differentiated meteorites. This leads to some differences in the Fe2+ and Mg2+ distribution between the M1 and M2 sites in olivine, orthopyroxene and clinopyroxene crystals in stony meteorites resulting in small variations in the Fe local microenvironment. For this reason, a comparison of Mössbauer hyperfine parameters for the 57Fe in the M1 and M2 sites in orthopyroxene and Ca-rich clinopyroxene for non-differentiated NWA 6286 LL6, NWA 7857 LL6 and Tsarev L5 ordinary chondrites and differentiated Sariçiçek howardite was carried out. The results obtained demonstrated small variations in quadrupole splitting and isomer shift for the studied non-differentiated and differentiated stony meteorites.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Dyar, M.D., Sklute, E.C., Menzies, O.N., Bland, P.A., Lindsley, D., Glotch, T., Lane, M.D., Schaefer, M.W., Wopenka, B., Klima, R., Bishop, J.L., Hiroi, T., Pieters, C., Sunshine, J.: Spectroscopic characteristics of synthetic olivine: an integrated multi-wavelength and multi-technique approach. Am. Mineral. 94, 883–898 (2009)

    ADS  Article  Google Scholar 

  2. 2.

    Dyar, M.D., Klima, R.L., Fleagle, A., Peel, S.E.: Fundamental Mössbauer parameters of synthetic Ca-Mg-Fe pyroxenes. Am. Mineral. 98, 1172–1186 (2013)

    ADS  Article  Google Scholar 

  3. 3.

    Rubin, A.E.: Mineralogy of meteorite groups. Meteorit. Planet. Sci. 32, 231–247 (1997)

    ADS  Article  Google Scholar 

  4. 4.

    Weisberg, M.K., McCoy, T.J., Krot, A.N.: Systematics and evaluation of meteorite classification. In: Lauretta, D.S., McSween Jr., H.Y. (eds.) Meteorites and the Early Solar System II, pp. 19–52. The University of Arizona Press, Tucson (2006)

    Google Scholar 

  5. 5.

    Mittlefehldt, D.W.: Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chem. Erde. 75, 155–183 (2015)

    Article  Google Scholar 

  6. 6.

    Burbine, T.H., Buchanan, P.C., Klima, R.L., Binzel, R.P.: Can formulas derived from pyroxenes and/or HEDs be used to determine the mineralogies of V-type asteroids? J. Geophys. Res. Planets. 123, 1791–1803 (2018)

    ADS  Google Scholar 

  7. 7.

    McSween Jr., H.Y., Binzel, R.P., De Sanctis, M.C., Ammannito, E., Prettyman, T.H., Beck, A.W., Reddy, V., Le Corre, L., Gaffey, M.J., McCord, T.B., Raymond, C.A., Russell, C.T.: Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteorit. Planet. Sci. 48, 2090–2104 (2013)

    ADS  Article  Google Scholar 

  8. 8.

    Maksimova, A.A., Oshtrakh, M.I., Chukin, A.V., Felner, I., Yakovlev, G.A., Semionkin, V.A.: Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta Part A: Mol. Biomolec. Spectrosc. 192, 275–284 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    Maksimova, A.A., Kamalov, R.V., Chukin, A.V., Felner, I., Oshtrakh, M.I.: An analysis of orthopyroxene from Tsarev L5 meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy. J. Mol. Struct. 1174, 6–11 (2018)

    ADS  Article  Google Scholar 

  10. 10.

    Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G.: Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research. J. Radioanal. Nucl. Chem. 281, 63–67 (2009)

    Article  Google Scholar 

  11. 11.

    Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G.: A high velocity resolution Mössbauer spectrometric system for biomedical research. Bull. Rus. Acad. Sci.: Phys. 74, 416–420 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    Oshtrakh, M.I., Semionkin, V.A.: Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta A Mol. Biomol. Spectrosc. 100, 78–87 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    Oshtrakh, M.I., Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution: principles and applications. In: Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”, Eds. J. Tuček, M. Miglierini, AIP Conference Proceedings. AIP Publishing, Melville, New York, 2016, 1781, 020019

  14. 14.

    Maksimova, A.A., Chukin, A.V., Oshtrakh, M.I. Revealing of the minor iron-bearing phases in the Mössbauer spectra of Chelyabinsk LL5 ordinary chondrite fragment. In: Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”, Eds. J. Tuček, M. Miglierini, AIP Conference Proceedings. AIP Publishing, Melville, New York, 2016, 1781, 020016

  15. 15.

    Maksimova, A.A., Klencsár, Z., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Kuzmann, E., Homonnay, Z., Semionkin, V.A.: Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite. Hyperfine Interact. 237, 33 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    Maksimova, A.A., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 172, 65–76 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    Oshtrakh, M.I., Maksimova, A.A., Chukin, A.V., Petrova, E.V., Jenniskens, P., Kuzmann, E., Grokhovsky, V.I., Homonnay, Z., Semionkin, V.A.: Variability of Chelyabinsk meteoroid stones studied by Mössbauer spectroscopy and X-ray diffraction. Spectrochim. Acta A: Mol Biomol. Spectrosc. (2019, in press). https://doi.org/10.1016/j.saa.2019.03.036

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank G.A. Yakovlev and Dr. M.S. Karabanalov for the help with scanning electron microscopy with energy dispersive spectroscopy. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (the Project № 3.1959.2017/4.6) and Act 211 Government of the Russian Federation, contract № 02.A03.21.0006. O.U. acknowledges the Scientific and Technological Research Council of Turkey (the Project number: MFAG/113F035).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael I. Oshtrakh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019

Edited by S. N. Mishra, P. L. Paulose and R. Palit

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maksimova, A.A., Unsalan, O., Chukin, A.V. et al. Comparison of the 57Fe hyperfine interactions in silicate phases in Sariçiçek howardite and some ordinary chondrites. Hyperfine Interact 240, 47 (2019). https://doi.org/10.1007/s10751-019-1593-8

Download citation

Keywords

  • Mössbauer hyperfine parameters
  • Ordinary chondrites
  • Howardites
  • The M1 and M2 sites in orthopyroxene and Ca-rich clinopyroxene