Hyperfine Interactions

, 240:47 | Cite as

Comparison of the 57Fe hyperfine interactions in silicate phases in Sariçiçek howardite and some ordinary chondrites

  • Alevtina A. Maksimova
  • Ozan Unsalan
  • Andrey V. Chukin
  • Michael I. OshtrakhEmail author
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019


Silicate crystals have different thermal history in non-differentiated and differentiated meteorites. This leads to some differences in the Fe2+ and Mg2+ distribution between the M1 and M2 sites in olivine, orthopyroxene and clinopyroxene crystals in stony meteorites resulting in small variations in the Fe local microenvironment. For this reason, a comparison of Mössbauer hyperfine parameters for the 57Fe in the M1 and M2 sites in orthopyroxene and Ca-rich clinopyroxene for non-differentiated NWA 6286 LL6, NWA 7857 LL6 and Tsarev L5 ordinary chondrites and differentiated Sariçiçek howardite was carried out. The results obtained demonstrated small variations in quadrupole splitting and isomer shift for the studied non-differentiated and differentiated stony meteorites.


Mössbauer hyperfine parameters Ordinary chondrites Howardites The M1 and M2 sites in orthopyroxene and Ca-rich clinopyroxene 



The authors wish to thank G.A. Yakovlev and Dr. M.S. Karabanalov for the help with scanning electron microscopy with energy dispersive spectroscopy. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (the Project № 3.1959.2017/4.6) and Act 211 Government of the Russian Federation, contract № 02.A03.21.0006. O.U. acknowledges the Scientific and Technological Research Council of Turkey (the Project number: MFAG/113F035).


  1. 1.
    Dyar, M.D., Sklute, E.C., Menzies, O.N., Bland, P.A., Lindsley, D., Glotch, T., Lane, M.D., Schaefer, M.W., Wopenka, B., Klima, R., Bishop, J.L., Hiroi, T., Pieters, C., Sunshine, J.: Spectroscopic characteristics of synthetic olivine: an integrated multi-wavelength and multi-technique approach. Am. Mineral. 94, 883–898 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Dyar, M.D., Klima, R.L., Fleagle, A., Peel, S.E.: Fundamental Mössbauer parameters of synthetic Ca-Mg-Fe pyroxenes. Am. Mineral. 98, 1172–1186 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Rubin, A.E.: Mineralogy of meteorite groups. Meteorit. Planet. Sci. 32, 231–247 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Weisberg, M.K., McCoy, T.J., Krot, A.N.: Systematics and evaluation of meteorite classification. In: Lauretta, D.S., McSween Jr., H.Y. (eds.) Meteorites and the Early Solar System II, pp. 19–52. The University of Arizona Press, Tucson (2006)Google Scholar
  5. 5.
    Mittlefehldt, D.W.: Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chem. Erde. 75, 155–183 (2015)CrossRefGoogle Scholar
  6. 6.
    Burbine, T.H., Buchanan, P.C., Klima, R.L., Binzel, R.P.: Can formulas derived from pyroxenes and/or HEDs be used to determine the mineralogies of V-type asteroids? J. Geophys. Res. Planets. 123, 1791–1803 (2018)ADSGoogle Scholar
  7. 7.
    McSween Jr., H.Y., Binzel, R.P., De Sanctis, M.C., Ammannito, E., Prettyman, T.H., Beck, A.W., Reddy, V., Le Corre, L., Gaffey, M.J., McCord, T.B., Raymond, C.A., Russell, C.T.: Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteorit. Planet. Sci. 48, 2090–2104 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Maksimova, A.A., Oshtrakh, M.I., Chukin, A.V., Felner, I., Yakovlev, G.A., Semionkin, V.A.: Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta Part A: Mol. Biomolec. Spectrosc. 192, 275–284 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Maksimova, A.A., Kamalov, R.V., Chukin, A.V., Felner, I., Oshtrakh, M.I.: An analysis of orthopyroxene from Tsarev L5 meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy. J. Mol. Struct. 1174, 6–11 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G.: Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research. J. Radioanal. Nucl. Chem. 281, 63–67 (2009)CrossRefGoogle Scholar
  11. 11.
    Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G.: A high velocity resolution Mössbauer spectrometric system for biomedical research. Bull. Rus. Acad. Sci.: Phys. 74, 416–420 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Oshtrakh, M.I., Semionkin, V.A.: Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta A Mol. Biomol. Spectrosc. 100, 78–87 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Oshtrakh, M.I., Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution: principles and applications. In: Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”, Eds. J. Tuček, M. Miglierini, AIP Conference Proceedings. AIP Publishing, Melville, New York, 2016, 1781, 020019Google Scholar
  14. 14.
    Maksimova, A.A., Chukin, A.V., Oshtrakh, M.I. Revealing of the minor iron-bearing phases in the Mössbauer spectra of Chelyabinsk LL5 ordinary chondrite fragment. In: Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”, Eds. J. Tuček, M. Miglierini, AIP Conference Proceedings. AIP Publishing, Melville, New York, 2016, 1781, 020016Google Scholar
  15. 15.
    Maksimova, A.A., Klencsár, Z., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Kuzmann, E., Homonnay, Z., Semionkin, V.A.: Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite. Hyperfine Interact. 237, 33 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Maksimova, A.A., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 172, 65–76 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Oshtrakh, M.I., Maksimova, A.A., Chukin, A.V., Petrova, E.V., Jenniskens, P., Kuzmann, E., Grokhovsky, V.I., Homonnay, Z., Semionkin, V.A.: Variability of Chelyabinsk meteoroid stones studied by Mössbauer spectroscopy and X-ray diffraction. Spectrochim. Acta A: Mol Biomol. Spectrosc. (2019, in press). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussian Federation
  2. 2.Department of Physics, Faculty of ScienceEge UniversityIzmirTurkey

Personalised recommendations