Skip to main content

Advertisement

Log in

Identification and investigation of possible ultra-low Q value β decay candidates

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Among the wide energy range of β decays, there can exist decays with Q values as low as a few hundred eV. These decays can occur when the parent decays to a excited state in the daughter nucleus. Such decays have been called “ultra-low” Q value β decays. Their application is mainly twofold: (1) they are of interest as potential candidates for neutrino mass determination experiments, and (2) they provide a testing ground for theoretical studies of atomic interference effects in the nuclear decay process. In this work we have identified a number of such potential candidates by analyzing the most recent atomic mass and nuclear energy level data. To determine if an ultra-low Q value β decay branch is energetically allowed for these candidates, more precise and accurate data for the Q value of the ultra-low decay branch is needed. In most cases, this requires more precise atomic mass measurements for the parent and/or daughter atoms. These requirements can be met using Penning trap mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Mustonen, M., Suhonen, J.: . J. Phys. G: Nucl. Part. Phys. 37, 064008 (2010)

    Article  ADS  Google Scholar 

  2. Cattadori, C.M., De Deo, M., Laubenstein, M., Pandola, L., Tretyak, V.I.: . Nucl. Phys. A 748, 333 (2005)

    Article  ADS  Google Scholar 

  3. Mount, B.J., Redshaw, M., Myers, E.G.: . Phys. Rev. Lett. 103, 122502 (2009)

    Article  ADS  Google Scholar 

  4. Wieslander, J.S.E., Suhonen, J., Eronen, T., Hult, M., Elomaa, V.V., Jokinen, A., Marissens, G., Misiaszek, M., Mustonen, M.T., Rahaman, S., et al.: . Phys. Rev. Lett. 103, 122501 (2009)

    Article  ADS  Google Scholar 

  5. Ferri, E., Bagliani, D., Biasotti, M., Ceruti, G., Corsini, D., Faverzani, M., Gatti, F., Giachero, A., Gotti, C., Kilbourne, C., et al.: . Phys. Procedia 61, 227 (2015)

    Article  ADS  Google Scholar 

  6. Aseev, V.N., Belesev, A.I., Berlev, A.I., Geraskin, E.V., Golubev, A.A., Likhovid, N.A., Lobashev, V.M., Nozik, A.A., Pantuev, V.S., Parfenov, V.I., Skasyrskaya, A.K., Tkachov, F.V., Zadorozhny, S.V.: . Phys. Rev. D 84, 112003 (2011)

    Article  ADS  Google Scholar 

  7. Kraus, C., Bornschein, B., Bornschein, L., Bonn, J., Flatt, B., Kovalik, A., Ostrick, B., Otten, E., Schall, J., Thümmler, T., et al.: . Eur. Phys. J. C 40, 447 (2005)

    Article  ADS  Google Scholar 

  8. Drexlin, G., Hannen, V., Mertens, S., Weinheimer, C.: . Adv. High Energy Phys. 2013, 293986 (2013)

    Article  Google Scholar 

  9. Nucciotti, A., et al.: . Nucl. Phys. B. Proc. Suppl. 229, 155 (2012)

    Article  ADS  Google Scholar 

  10. Gastaldo, L., Blaum, K., Dörr, A., Düllmann, C. E., Eberhardt, K., Eliseev, S., Enss, C., Faessler, A., Fleischmann, A., Kempf, S., et al.: . J. Low Temp. Phys. 176, 876 (2014)

    Article  ADS  Google Scholar 

  11. Alpert, B., Balata, M., Bennett, D., Biasotti, M., Boragno, C., Brofferio, C., Ceriale, V., Corsini, D., Day, P., De Gerone, M., et al.: . Eur. Phys. J. C 75, 112 (2015)

    Article  ADS  Google Scholar 

  12. Croce, M.P., Rabin, M.W., Mocko, V., Kunde, G.J., Birnbaum, E.R., Bond, E., Engle, J.W., Hoover, A.S., Nortier, F.M., Pollington, A.D., et al.: . J. Low Temp. Phys. 184, 958 (2016)

    Article  ADS  Google Scholar 

  13. Nesterenko, D., Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dörr, A., Droese, C., Filianin, P., Goncharov, M., Ramirez, E.M., et al.: . Phys. Rev. C 90, 042501 (2014)

    Article  ADS  Google Scholar 

  14. Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, C. E., Enss, C., Filianin, P., Gastaldo, L., Goncharov, M., et al.: . Phys. Rev. Lett. 115, 062501 (2015)

    Article  ADS  Google Scholar 

  15. Haaranen, M., Suhonen, J.: . Eur. Phys. J. A 49, 93 (2013)

    Article  ADS  Google Scholar 

  16. Mustonen, M., Suhonen, J.: . Phys. Lett. B 703, 370 (2011)

    Article  ADS  Google Scholar 

  17. Suhonen, J.: . Phys. Scripta 89, 054032 (2014)

    Article  ADS  Google Scholar 

  18. Mustonen, M., Suhonen, J.: . AIP Conf. Proc. 1304, 401 (2010)

    Article  ADS  Google Scholar 

  19. Kopp, J., Merle, A.: . Phys. Rev. C 81, 045501 (2010)

    Article  ADS  Google Scholar 

  20. Audi, G., Kondev, F., Wang, M., Huang, W., Naimi, S.: . Chinese Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

  21. National nuclear data center. https://www.nndc.bnl.gov/

  22. Redshaw, M., Bollen, G., Brodeur, M., Bustabad, S., Lincoln, D.L., Novario, S.J., Ringle, R., Schwarz, S.: . Phys. Rev. C 86, 041306 (2012)

    Article  ADS  Google Scholar 

  23. Gulyuz, K., Ariche, J., Bollen, G., Bustabad, S., Eibach, M., Izzo, C., Novario, S.J., Redshaw, M., Ringle, R., Sandler, R., Schwarz, S., Valverde, A.A.: . Phys. Rev. C 91, 055501 (2015)

    Article  ADS  Google Scholar 

  24. Shi, W., Redshaw, M., Myers, E.G.: . Phys. Rev. A 72, 022510 (2005)

    Article  ADS  Google Scholar 

  25. Ringle, R.: . Int. J. Mass Spectrom. 349, 87 (2013)

    Article  Google Scholar 

  26. Sandler, R., et al.: (in preparation)

  27. Savard, G., Barber, R., Boudreau, C., Buchinger, F., Caggiano, J., Clark, J., Crawford, J., Fukutani, H., Gulick, S., Hardy, J., et al.: .. In: Atomic Physics at Accelerators: Mass Spectrometry, pp. 223–230. Springer (2001)

  28. Gamage, N.D., Bollen, G., Eibach, M., Gulyuz, K., Izzo, C., Kandegedara, R.M.E.B., Redshaw, M., Ringle, R., Sandler, R., Valverde, A.A.: . Phys. Rev. C 94, 025505 (2016)

    Article  ADS  Google Scholar 

  29. Sandler, R., et al.: (in preparation)

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0015927. We also acknowledge support from Central Michigan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Gamage.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamage, N.D., Bhandari, R., Horana Gamage, M. et al. Identification and investigation of possible ultra-low Q value β decay candidates. Hyperfine Interact 240, 43 (2019). https://doi.org/10.1007/s10751-019-1588-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1588-5

Keywords

Navigation