Hyperfine Interactions

, 240:37 | Cite as

Ab initio description of collectivity for sd shell nuclei

  • Archana SaxenaEmail author
  • Anil Kumar
  • Vikas Kumar
  • Praveen C. Srivastava
  • Toshio Suzuki
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10–15 February 2019


In the present work, we have reported shell model results for open shell nuclei Ne, Mg and Si isotopes with 10 ≤ N ≤ 20 in sd-shell model space. We have performed calculations in sd shell with two ab initio approaches: in-medium similarity renormalization group (IM-SRG) and coupled-cluster (CC) theory. We have also performed calculations with phenomenological USDB interaction and chiral effective field theory based CEFT interaction. The results for rotational spectra and \(B(E2;2_{1}^{+}\rightarrow 0_{1}^{+})\) transitions are reported for even-mass isotopes. The IM-SRG and CC results are in reasonable agreement with the experimental data except at N = 20. This demonstrates a validity of ab initio description of deformation for doubly open-shell nuclei for sd shell. To see the importance of pf orbitals, we have also compared our results with SDPF-MU interaction by taking account of 2p − 2h and 4p − 4h configurations in sd-pf -shell model space.


Shell model Effective interactions Island of inversion Collectivity 



AS acknowledges financial support from MHRD (Govt. of India) for her Ph.D. thesis work. Vikas Kumar acknowledges partial support from CUK.


  1. 1.
    Tsunoda, N., Otsuka, T., Shimizu, N., Hjorth-Jensen, M., Takayanai, K., Suzuki, T.: Exotic neutron-rich medium-mass nuclei with realistic nuclear forces. Phys. Rev. C 95, 021304(R) (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Crawford, H.L., Fallon, P., Macchiavelli, A.O., Poves, A., Bader, V.M., Bazin, D., Bowry, M., Campbell, C.M., Carpenter, M.P., Clark, R.M., et al.: Rotational band structure in 32Mg. Phys. Rev. C 93, 031303(R) (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Stroberg, S.R., Hergert, H., Holt, J.D., Bogner, S.K., Schwenk, A.: Ground and excited states of doubly open-shell nuclei from a b i n i t i o valence-space Hamiltonians. Phys. Rev. C 93, 051301(R) (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Jansen, G.R., Engel, J., Hagen, G., Navrátil, P., Signoracci, A.: A b i n i t i o coupled-cluster effective interactions for the shell model: application to neutron-rich oxygen and carbon isotopes. Phys. Rev. Lett. 113, 142502 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Saxena, A., Srivastava, P.C.: First-principles results for electromagnetic properties of sd shell nuclei. Phys. Rev. C 96, 024316 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Saxena, A., Srivastava, P.C., Suzuki, T.: A b i n i t i o calculations of Gamow-Teller strengths in the sd shell. Phys. Rev. C 97, 024310 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Srivastava, P.C., Kumar, V.: Spectroscopic factor strengths using a b i n i t i o approaches. Phys. Rev. C 94, 064306 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Macchiavelli, A.O., et al.: The 30Mg(t,p)32Mg “puzzle” reexamined. Phys. Rev. C 94, 051303(R) (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Jansen, G.R., Schuster, M.D., Signoracci, A., Hagen, G., Navrátil, P.: Open sd-shell nuclei from first principles. Phys. Rev. C 94, 011301(R) (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Brown, B.A., Richter, W.A.: New “USD” Hamiltonians for the s d shell. Phys. Rev. C 74, 034315 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Utsuno, Y., Otsuka, T., Brown, B.A., Honma, M., Mizusaki, T., Shimizu, N.: Shape transitions in exotic Si and S isotopes and tensor-force-driven Jahn-Teller effect. Phys. Rev. C 86, 051301(R) (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Shimizu, N.: Nuclear shell-model code for massive parallel computation, KSHELL (private communication)Google Scholar
  13. 13.
    Bogner, S.K., Furnstahl, R.J., Schwenk, A.: From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 65, 94 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Huth, L., Durant, V., Simonis, J., Schwenk, A.: Shell-model interactions from chiral effective field theory. Phys. Rev. C 98, 044301 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Rowe, D.J., Wood, J.L: Fundamentals of Nuclear Models. World Scientific, Singapore (2010)CrossRefGoogle Scholar
  16. 16.
    Data extracted using the NNDC World Wide Web site from the ENSDF database:
  17. 17.
    Pritychenko, B., Birch, M., Singh, B., Horoi, M.: Tables of E2 transition probabilities from the first 2+ states in even-even nuclei. At. Data Nucl. Data Tables 107, 1 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Iwasaki, H., et al.: Quadrupole collectivity of 28Ne and the boundary of the island of inversion. Phys. Lett. B 620, 118 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of TechnologyRoorkeeIndia
  2. 2.Department of PhysicsCentral University of KashmirGanderbalIndia
  3. 3.Department of Physics, College of Humanities and ScienceNihon UniverityTokyoJapan
  4. 4.National Astronomical Observatory of JapanTokyoJapan

Personalised recommendations