Advertisement

Hyperfine Interactions

, 240:33 | Cite as

Catching, trapping and in-situ-identification of thorium ions inside Coulomb crystals of 40Ca+ ions

  • Felix StoppEmail author
  • Karin Groot-Berning
  • Georg Jacob
  • Dmitry Budker
  • Raphael Haas
  • Dennis Renisch
  • Jörg Runke
  • Petra Thörle-Pospiech
  • Christoph E. Düllmann
  • Ferdinand Schmidt-Kaler
Article
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Abstract

Thorium ions exhibit unique nuclear properties with high relevance for testing symmetries of nature, and Paul traps feature an ideal experimental platform for performing high precision quantum logic spectroscopy. Loading of stable or long-lived isotopes is well-established and relies on ionization from an atomic beam. A different approach allows trapping short-lived isotopes available as alpha-decay daughters, which recoil from a thin sample of the precursor nuclide. A prominent example is the short-lived 229mTh, populated in a decay of long-lived 233U. Here, ions are provided by an external source and are decelerated to be available for trapping. Such setups offer the option to trap various isotopes and charge states of thorium. Investigating this complex procedure, we demonstrate the observation of single 232Th+ ions trapped, embedded into and sympathetically cooled via Coulomb interactions by co-trapped 40Ca+ ions. Furthermore, we discuss different options for a non-destructive identification of the sympathetically cooled thorium ions in the trap, and describe in detail our chosen experimental method, identifying mass and charge of thorium ions from the positions of calcium ions, as their fluorescence is imaged on a CCD camera. These findings are verified by means of a time-of-flight signal when extracting ions of different mass-to-charge ratio from the Paul trap and steering them into a detector.

Keywords

Thorium ions Linear Paul trap Sympathetic cooling 

PACS

37.10.Rs 37.20. + j 29.25.Rm 

Notes

Acknowledgments

This work was financially supported by the Helmholtz Excellence Network ExNet-020, Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA+) from the Helmholtz Initiative and Networking Fund, and we acknowledge financial support by the DFG DIP program (FO 703/2-1) and by the VW Stiftung.

References

  1. 1.
    Schmidt, P.O., et al.: Spectroscopy using quantum logic. Science 309, 749 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    von der Wense, L., et al.: Direct detection of the 229Th nuclear clock transition. Nature 533, 47 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Seiferle, B., et al.: Lifetime measurement of the 229Th Nuclear Isomer. Phys. Rev. Lett. 118, 042501 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Gunter, K., et al.: Charge and energy distributions of recoils from Th226 alpha decay. Phys. Rev. Lett. 16, 9 (1966)CrossRefGoogle Scholar
  5. 5.
    Groot-Berning, K., et al.: Trapping and sympathetic cooling of single thorium ions for spectroscopy. Accepted Paper Phys. Rev. A (2018)Google Scholar
  6. 6.
    Jacob, G., et al.: Transmission microscopy with nanometer resolution using a deterministic single ion source. Phys. Rev. Lett. 117, 043001 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Schmöger, L., et al.: Coulomb crystallization of highly charged ions. Science 347, 6227 (2015)CrossRefGoogle Scholar
  8. 8.
    Schmöger, L., et al.: Deceleration, precooling, and multi-pass stopping of highly charged ions in Be+ Coulomb crystals. Rev. Sci. Inst. 86, 103111 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Leibfried, D., et al.: Experimental preparation and measurement of quantum state of motion of trapped atom. J. Mod. Opt. 44(11/12), 2485–2505 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Welzel, J., et al.: Spin and motion dynamics with zigzag ion crystals in transverse magnetic gradients. J. Phys. B: At. Mol. Phys. 52, 025301 (2019)CrossRefGoogle Scholar
  11. 11.
    Drewsen, M., et al.: Nondestructive identification of cold and extremely localized single molecular ions. Phys. Rev. Lett. 93, 243201 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Ulm, S., et al.: Observation of the Kibble-Zurek scaling law for defect formation in ion crystals. Nat. Comm. 4, 2290 (2013)CrossRefGoogle Scholar
  13. 13.
    Kielpinski, D., et al.: Sympathetic cooling of trapped ions for quantum logic. Phys. Rev. A 61, 032310 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Morigi, G., Walter, H.: Two-species Coulomb chains for quantum information. Eur. Phys. J. D 13(2), 261–269 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Wübbena, J.B., et al.: Sympathetic cooling of mixed-species two-ion crystals for precision spectroscopy. Phys. Rev. A 85, 043412 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    James, D.F.V.: Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys. B 66, 181–190 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Home, J.P.: Advances in atomic, molecular, and optical physics: Quantum science and metrology with mixed-species ion chains, 231-277. Elsevier, 62 (2013)Google Scholar
  18. 18.
    Marquet, C., et al.: Phonon-phonon interactions due to non-linear effects in a linear ion trap. Appl. Phys. B 76(3), 199–209 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Thielking, J., et al.: Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Felix Stopp
    • 1
    Email author
  • Karin Groot-Berning
    • 1
  • Georg Jacob
    • 1
    • 2
  • Dmitry Budker
    • 1
    • 3
    • 4
    • 5
  • Raphael Haas
    • 3
    • 6
  • Dennis Renisch
    • 3
    • 6
  • Jörg Runke
    • 6
    • 7
  • Petra Thörle-Pospiech
    • 3
    • 6
  • Christoph E. Düllmann
    • 3
    • 5
    • 6
    • 7
  • Ferdinand Schmidt-Kaler
    • 1
    • 3
    • 5
  1. 1.QUANTUM, Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Alpine Quantum Technologies GmbHInnsbruckAustria
  3. 3.Helmholtz Institut MainzMainzGermany
  4. 4.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  5. 5.PRISMA Cluster of ExcellenceJohannes Gutenberg-Universität MainzMainzGermany
  6. 6.Institut für KernchemieJohannes Gutenberg-Universität MainzMainzGermany
  7. 7.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany

Personalised recommendations