Advertisement

Hyperfine Interactions

, 240:44 | Cite as

Magnetite and the Verwey transition, from γ-rays to low-energy electrons

  • Juan de la FigueraEmail author
  • José F. Marco
Article
Part of the following topical collections:
  1. Proceedings of the 16th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2018), 18–23 November 2018, Santiago de Chile, Chile

Abstract

Magnetite, a semiconducting ferrimagnetic iron spinel with a metal-insulator phase transition, the Verwey transition, has long been the subject of Mössbauer spectroscopy studies, which continue today. We review the current status of the understanding of the Mössbauer spectra of magnetite. Furthermore, magnetite is a very attractive material in current topics such as spintronics. In this particular subject, to determine the behavior of magnetic domains is paramount, and the changes ocurring on the near surface region upon undergoing the Verwey transition are relevant. In order to advance in this area, we have incorporated some new techniques, namely microscopy observations made with low-energy electrons. These observations can be performed upon changing the temperature, and can provide magnetic contrast through the use of spin-polarized electrons. By this means, we have observed the ferroelastic transformation associated with the Verwey transition, discovered an order-disorder transition of the (001) surface of magnetite and observed the changes in the magnetic domains on the same surface by changing the temperature. Low-energy electrons also are the key to the Mössbauer experiments of magnetite films and surfaces, with the promise of providing surface-sensitive spatially resolved Mössbauer spectra.

Keywords

Magnetite Surfaces Magnetism Low-energy electrons Low-energy electron microscopy Mössbauer spectroscopy Verwey transition 

PACS

75.50.Gg 76.80.+y 75.70.i 71.30.+h 

Notes

Acknowledgements

This research was partially supported by the Spanish Ministry of Economy and Competitiveness No. MAT2015-64110-C2-1-P, the Comunidad Autónoma de Madrid NANOMAGCOST-CM project with Ref. P2018/NMT-4321, the European Commission through Project H2020 No. 720853 (Amphibian) and the Chilean FONDECYT Project No. 1161117.

References

  1. 1.
    Mills, A.A.: The lodestone: history, physics, and formation. Ann. Sci. 61, 273 (2004)Google Scholar
  2. 2.
    Bragg, W.H.: The structure of magnetite and the spinels. Nature 95, 561 (1915)ADSGoogle Scholar
  3. 3.
    Cornell, R.M., Schwertmann, U.: The Iron Oxides. Wiley, New York (1997)Google Scholar
  4. 4.
    Aragón, R.: Cubic magnetic anisotropy of nonstoichiometric magnetite. Phys. Rev. B 46, 5334–5338 (1992)ADSGoogle Scholar
  5. 5.
    Muxworthy, A.R., McClelland, E.: Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective. Geophys. J. Int. 140, 101–114 (2000)ADSGoogle Scholar
  6. 6.
    Verwey, E.J.W.: Electronic conduction of magnetite Fe3O 4 and its transition point at low temperatures. Nature 144, 327–328 (1939)ADSGoogle Scholar
  7. 7.
    Walz, F.: The Verwey transition - a topical review. J. Phys. Cond. Mat. 14, R285–R340 (2002)ADSGoogle Scholar
  8. 8.
    García, J., Subías, G.: The Verwey transition-a new perspective. J. Phys. Cond. Mat. 16, R145–R178 (2004)ADSGoogle Scholar
  9. 9.
    Kasama, T., Church, N.S., Feinberg, J.M., Dunin-Borkowski, R.E., Harrison, R.J.: Direct observation of ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Earth Plan. Sci. Lett. 297, 10–17 (2010)ADSGoogle Scholar
  10. 10.
    de la Figuera, J., Novotny, Z., Setvin, M., Liu, T., Mao, Z., Chen, G., N’Diaye, A.T., Schmid, M., Diebold, U., Schmid, A.K., Parkinson, G.S.: Real-space imaging of the Verwey transition at the (100) surface of magnetite. Phys. Rev. B 88, 161410 (2013)ADSGoogle Scholar
  11. 11.
    Senn, M.S., Wright, J.P., Attfield, J.P.: Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173–176 (2012)ADSGoogle Scholar
  12. 12.
    Parkinson, G.S.: Iron oxide surfaces. Surf. Sci. Rep. 71, 272–365 (2016)ADSGoogle Scholar
  13. 13.
    Lodziana, Z.: Surface Verwey transition in magnetite. Phys. Rev. Lett. 99, 206402 (2007)ADSGoogle Scholar
  14. 14.
    Bliem, R., McDermott, E., Ferstl, P., Setvin, M., Gamba, O., Pavelec, J., Schneider, M.A., Schmid, M., Diebold, U., Blaha, P., Hammer, L., Parkinson, G.S.: Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 346, 1215–1218 (2014)ADSGoogle Scholar
  15. 15.
    Bauminger, R., Cohen, S.G., Marinov, A., Ofer, S., Segal, E.: Study of the low-temperature transition in magnetite and the internal fields acting on iron nuclei in some spinel ferrites, using Mössbauer absorption. Phys. Rev. 122, 1447–1450 (1961)ADSGoogle Scholar
  16. 16.
    Häggström, L., Annersten, H., Ericsson, T., Wäppling, R., Karner, W., Bjarman, S.: Magnetic dipolar and electric quadrupolar effects on the Mössbauer spectra of magnetite above the Verwey transition. Hyperfine Interact. 5, 201 (1977)ADSGoogle Scholar
  17. 17.
    Chlan, V., żukrowski, J., Bosak, A., Kakol, Z., Kozłowski, A., Tarnawski, Z., Řezníc̆ek, R., Štěpánková, H., Novák, P., Biało, I., Honig, J.M.: Effect of low Zn doping on the Verwey transition in magnetite single crystals: Mössbauer spectroscopy and x-ray diffraction. Phys. Rev. B 98, 125138 (2018)ADSGoogle Scholar
  18. 18.
    Vandenberghe, R.E., De Grave, E.: Mössbauer effect studies of oxidic spinels. In: Long, G.J., Grandjean, F. (eds.) Mössbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry, pp 59–182. Springer, US (1989)Google Scholar
  19. 19.
    Berry, F.J., Skinner, S., Thomas, M.F.: Mössbauer spectroscopic examination of a single crystal of Fe3O 4. J. Phys.: Cond. Matt. 10, 215–220 (1998)ADSGoogle Scholar
  20. 20.
    Řezníc̆ek, R., Chlan, V., Štěpánková, H., Novák, P., żukrowski, J., Kozłowski, A., Kakol, Z., Tarnawski, Z., Honig, J.M.: Understanding the Mössbauer spectrum of magnetite below the Verwey transition: ab initio calculations, simulation, and experiment. Phys. Rev. B 96, 195124 (2017)ADSGoogle Scholar
  21. 21.
    Řezníc̆ek, R., Chlan, V., Štěpánková, H., Novák, P.: Hyperfine field and electronic structure of magnetite below the Verwey transition. Phys. Rev. B 91, 125134 (2015)ADSGoogle Scholar
  22. 22.
    Sawatzky, G.A., Coey, J.M.D., Morrish, A.H.: Mössbauer study of electron hopping in the octahedral sites of Fe3O 4. J. Appl. Phys. 40, 1402–1403 (1969)ADSGoogle Scholar
  23. 23.
    Stanka, B., Hebenstreit, W., Diebold, U., Chambers, S.A.: Surface reconstruction of Fe3O 4(001). Surf. Sci. 448, 49–63 (2000)ADSGoogle Scholar
  24. 24.
    McCarty, K.F., de la Figuera, J.: Low-energy electron microscopy. In: Surface Science Techniques. Springer Series in Surface Sciences, vol. 51, p 531. Springer, Berlin (2013)Google Scholar
  25. 25.
    Bauer, E.: Surface Microscopy with Low Energy Electrons. Springer, Berlin (2014)Google Scholar
  26. 26.
    de la Figuera, J., Puerta, J.M., Cerda, J.I., El Gabaly, F., McCarty, K.F.: Determining the structure of Ru(0001) from low-energy electron diffraction of a single terrace. Surf. Sci. 600, L105–L109 (2006)Google Scholar
  27. 27.
    Pentcheva, R., Wendler, F., Meyerheim, H.L., Moritz, W., Jedrecy, N., Scheffler, M.: Jahn-Teller stabilization of a “Polar” metal oxide surface: Fe3O 4(001). Phys. Rev. Lett. 94, 126101 (2005)ADSGoogle Scholar
  28. 28.
    Pentcheva, R., Moritz, W., Rundgren, J., Frank, S., Schrupp, D., Scheffler, M.: A combined DFT/LEED-approach for complex oxide surface structure determination: Fe3O 4(001). Surf. Sci. 602, 1299–1305 (2008)ADSGoogle Scholar
  29. 29.
    Bartelt, N.C., Nie, S., Starodub, E., Bernal-Villamil, I., Gallego, S., Vergara, L., McCarty, K.F., de la Figuera, J.: Order-disorder phase transition on the (100) surface of magnetite. Phys. Rev. B 88, 235436 (2013)ADSGoogle Scholar
  30. 30.
    Novotný, Z., Argentero, G., Wang, Z., Schmid, M., Diebold, U., Parkinson, G.S.: Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O 4(001). Phys. Rev. Lett. 108, 216103 (2012)ADSGoogle Scholar
  31. 31.
    Lindquist, A.K., Feinberg, J.M., Harrison, R.J., Loudon, J.C., Newell, A.J.: The effects of dislocations on crystallographic twins and domain wall motion in magnetite at the Verwey transition. Earth, Planets and Space 71, 5 (2019)Google Scholar
  32. 32.
    Rougemaille, N., Schmid, A.K.: Magnetic imaging with spin-polarized low-energy electron microscopy. Eur. Phys. J. App. Phys. 50, 20101 (2010)ADSGoogle Scholar
  33. 33.
    Duden, T., Bauer, E.: A compact electron-spin-polarization manipulator. Rev. Sci. Inst. 66, 2861 (1995)ADSGoogle Scholar
  34. 34.
    de la Figuera, J., Vergara, L., N’Diaye, A., Quesada, A., Schmid, A.: Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy. Ultramicroscopy 130, 77–81 (2013)Google Scholar
  35. 35.
    Martín-García, L., Chen, G., Montana, Y., Mascaraque, A., Pabon, B.M., Schmid, A.K., de la Figuera, J.: Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001). Sci. Rep. 8, 5991 (2018)ADSGoogle Scholar
  36. 36.
    Martín-García, L., Mascaraque, A., Pabón, B.M., Bliem, R., Parkinson, G.S., Chen, G., Schmid, A.K., de la Figuera, J.: Spin reorientation transition of magnetite (001). Phys. Rev. B 93, 134419 (2016)ADSGoogle Scholar
  37. 37.
    Monti, M., Sanz, M., Oujja, M., Rebollar, E., Castillejo, M., Pedrosa, F.J., Bollero, A., Camarero, J., Cuñado, J.L.F., Nemes, N.M., Mompean, F.J., Garcia-Hernández, M., Nie, S., McCarty, K.F., N’Diaye, A.T., Chen, G., Schmid, A.K., Marco, J.F., de la Figuera, J.: Room temperature in-plane 〈100〉 magnetic easy axis for Fe3O 4/SrTiO3(001):Nb grown by infrared pulsed laser deposition. J. Appl. Phys. 114, 223902 (2013)ADSGoogle Scholar
  38. 38.
    Margulies, D.T., Parker, F.T., Spada, F.E., Goldman, R.S., Li, J., Sinclair, R., Berkowitz, A.E.: . Phys. Rev. B 53(14), 9175 (1996)ADSGoogle Scholar
  39. 39.
    Voogt, F.C., Fujii, T., Smulders, P.J.M., Niesen, L., James, M.A., Hibma, T.: NO2-assisted molecular-beam epitaxy of Fe3O 4, Fe3−δO 4, and γ-Fe2O 3 thin films on MgO(100). Phys. Rev. B 60, 11193 (1999)ADSGoogle Scholar
  40. 40.
    Kalev, L.A., Niesen, L.: Nuclear resonance scattering study on the spin orientation in an epitaxial layer of Fe3O 4 on MgO(100). Phys. Rev. B 67(22), 224403 (2003)ADSGoogle Scholar
  41. 41.
    Margulies, D.T., Parker, F.T., Rudee, M.L., Spada, F.E., Chapman, J.N., Aitchison, P.R., Berkowitz, A.E.: Origin of the anomalous magnetic behavior in single crystal Fe3O 4 films. Phys. Rev. Lett. 79, 5162 (1997)ADSGoogle Scholar
  42. 42.
    Eerenstein, W.: Spin-dependent transport across anti-phase boundaries in magnetite films. Ph.D. Thesis, Rijskuniversisteit, Groningen (2003)Google Scholar
  43. 43.
    Voogt, F.C., Palstra, T.T.M., Niesen, L., Rogojanu, O.C., James, M.A., Hibma, T.: . Phys. Rev. B 57, R8107 (1998)ADSGoogle Scholar
  44. 44.
    Monti, M., Santos, B., Mascaraque, A., Rodríguez de la Fuente, O., Niño, M.A., Mentes, T.O., Locatelli, A., McCarty, K.F., Marco, J.F., de la Figuera, J.: Magnetism in nanometer-thick magnetite. Phys. Rev. B 85, 020404 (2012)ADSGoogle Scholar
  45. 45.
    Gancedo, J.R., Gracia, M., Marco, J.F.: CEMS methodology. Hyperfine Interact. 66, 83–93 (1991)ADSGoogle Scholar
  46. 46.
    De Grave, E., Vandenberghe, R.E., Dauwe, C.: ILEEMS: methodology and applications to iron oxides. Hyperfine Interact. 161, 147–160 (2005)ADSGoogle Scholar
  47. 47.
    Marco, J.F., Gancedo, J.R., Monti, M., de la Figuera, J.: Mössbauer spectroscopy and surface analysis. In: Mössbauer Spectroscopy, pp. 455–469. Wiley (2013)Google Scholar
  48. 48.
    Lee, J., Kwon, S.G., Park, J.-G., Hyeon, T.: Size dependence of metal-insulator transition in stoichiometric Fe3O 4 nanocrystals. Nano Lett. 15, 4337–4342 (2015)ADSGoogle Scholar
  49. 49.
    Korecki, J., Handke, B., Spiridis, N., Slezak, T., Flis-Kabulska, I., Haber, J.: Size effects in epitaxial films of magnetite. Thin Solid Films 412, 14–23 (2002)ADSGoogle Scholar
  50. 50.
    Spiridis, N., Handke, B., Slezak, T., Barbasz, J., Zajac, M., Haber, J., Korecki, J.: Surface structure of epitaxial magnetite Fe3O 4(001) films: in situ STM and CEMS studies. J. Phys. Chem. B 108, 14356–14361 (2004)Google Scholar
  51. 51.
    Kim-Ngan, N.T.H., Balogh, A.G., Meyer, J.D., Brotz, J., Hummelt, S., Zajac, M., Slezak, T., Korecki, J.: Structure, composition and crystallinity of epitaxial magnetite thin films. Surf. Sci. 602, 2358–2362 (2008)ADSGoogle Scholar
  52. 52.
    Spiridis, N., Wilgocka-Slezak, D., Freindl, K., Figarska, B., Giela, T., Mlynczak, E., Strzelczyk, B., Zajac, M., Korecki, J.: Growth and electronic and magnetic structure of iron oxide films on Pt(111). Phys. Rev. B 85, 075436 (2012)ADSGoogle Scholar
  53. 53.
    Schneider, C.M., Schönhense, G.: Investigating surface magnetism by means of photoexcitation electron emission microscopy. Rep. Prog. Phys. 65, 1785–1839 (2002)ADSGoogle Scholar
  54. 54.
    Martín-García, L., Gargallo-Caballero, R., Monti, M., Foerster, M., Marco, J.F., Aballe, L., de la Figuera, J.: Spin and orbital magnetic moment of reconstructed \(\sqrt {2}\times \sqrt {2}\)R45 magnetite(001). Phys. Rev. B 91, 020408 (2015)ADSGoogle Scholar
  55. 55.
    Gargallo-Caballero, R., Martín-García, L., Quesada, A., Granados-Miralles, C., Foerster, M., Aballe, L., Bliem, R., Parkinson, G.S., Blaha, P., Marco, J.F., de la Figuera, J.: Co on Fe3O 4(001): towards precise control of surface properties. J. Chem. Phys. 144, 094704 (2016)ADSGoogle Scholar
  56. 56.
    Potapkin, V., Chumakov, A.I., Smirnov, G.V., Celse, J.-P., Rüffer, R., McCammon, C., Dubrovinsky, L.: The 57Fe synchrotron Mössbauer source at the ESRF. J. Synchrotron Radiat. 19, 559–569 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Química Física “Rocasolano”MadridSpain

Personalised recommendations