Skip to main content
Log in

Simulations of a proof-of-principle experiment for collinear laser spectroscopy within a multi-reflection time-of-flight device

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

For nearly four decades Collinear Laser Spectroscopy (CLS) has been employed to determine ground-state properties of short-lived radionuclides. To extend its reach to the most exotic radionuclides with very low production yields, the novel Multi Ion Reflection Apparatus for CLS (MIRACLS) is currently under development at ISOLDE/CERN. In this setup, 30-keV ion bunches will be trapped between two electrostatic mirrors of a multi-reflection time-of-flight (MR-ToF) device such that the laser beam will probe the ions during each revolution. Thus, the observation time will be extended and the experimental sensitivity will be increased significantly while maintaining the high resolution of conventional CLS. A proof-of-principle experiment is currently being performed to demonstrate the potential of CLS within a low-energy MR-ToF device. Its first experimental results benchmark the validity of ion-optical simulations from the CLS perspective, which will also be applied to MIRACLS’ 30-keV apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blaum, K., Dilling, J., Nörtershäuser, W.: Precision atomic physics techniques for nuclear physics with radioactive beams. Physica Scripta 2013(T152), 014017 (2013)

    Article  Google Scholar 

  2. Campbell, P., Moore, I., Pearson, M.: Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127 (2016)

    Article  ADS  Google Scholar 

  3. Neugart, R., et al.: Collinear laser spectroscopy at ISOLDE: new methods and highlights. J. Phys. G: Nuclear Particle Phys. 44(6), 064002 (2017)

    Article  ADS  Google Scholar 

  4. Kaufman, S.: High-resolution laser spectroscopy in fast beams. Opt. Commun. 17(3), 309 (1976)

    Article  ADS  Google Scholar 

  5. Wollnik, H., Przewloka, M.: Time-of-flight mass spectrometers with multiply reflected ion trajectories. Int. J. Mass Spectrom. Ion Process. 96(3), 267 (1990)

    Article  ADS  Google Scholar 

  6. Plass, W.R., et al.: Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities. Nucl. Instrum. Methods Phys. Res., Sect. B 266(19), 4560 (2008)

    Article  ADS  Google Scholar 

  7. Piechaczek, A., et al.: Development of a high resolution isobar separator for study of exotic decays. Nucl. Instrum. Methods Phys. Res., Sect. B 266(19), 4510 (2008)

    Article  ADS  Google Scholar 

  8. Schury, P., et al.: Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions. Eur. Phys. J. A 42, 343 (2009)

    Article  ADS  Google Scholar 

  9. Wolf, R.N., et al.: On-line separation of short-lived nuclei by a multi-reflection time-of-flight device. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 686, 82 (2012)

    Article  ADS  Google Scholar 

  10. Wienholtz, F., et al.: Masses of exotic calcium isotopes pin down nuclear forces. Nature 498, 346 (2013)

    Article  ADS  Google Scholar 

  11. Zajfman, D., et al.: Electrostatic bottle for long-time storage of fast ion beams. Phys. Rev. A 55, R1577 (1997)

    Article  ADS  Google Scholar 

  12. Benner, W.H.: A gated electrostatic ion trap to repetitiously measure the charge and m/z of large electrospray ions. Anal. Chem. 69(20), 4162 (1997)

    Article  Google Scholar 

  13. Alexander, J.D., et al.: Short pulse laser-induced dissociation of vibrationally cold, trapped molecular ions. J. Phys. B: Atomic Molec. Opt. Phys. 42(15), 154027 (2009)

    Article  ADS  Google Scholar 

  14. Lange, M., et al.: A cryogenic electrostatic trap for long-time storage of keV ion beams. Re. Sci. Instrum. 81(5), 055105 (2010)

    Article  ADS  Google Scholar 

  15. Wolf, R.N., et al.: ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer. Int. J. Mass Spectrom. 349–350, 123 (2013)

    Article  Google Scholar 

  16. Rosenbusch, M., et al.: Towards systematic investigations of space-charge phenomena in multi-reflection ion traps. AIP Conf. Proc. 1521(1), 53 (2013)

    Article  ADS  Google Scholar 

  17. Rosenbusch, M., et al.: Delayed bunching for multi-reflection time-of-flight mass separation. AIP Conf. Proc. 1668(1), 050001 (2015)

    Article  Google Scholar 

  18. Schweikhard, L., et al.: Isobar separation and precision mass spectrometry of short-lived nuclides with a multi-reflection time-of-flight analyzer. Proceedings of Science PoS (X LASNPA) 011 (2014)

  19. Murböck, T., et al.: A compact source for bunches of singly charged atomic ions. Rev. Sci. Instrum. 87(4), 043302 (2016)

    Article  ADS  Google Scholar 

  20. Kreim, K., et al.: Nuclear charge radii of potassium isotopes beyond N = 28. Phys. Lett. B 731, 97 (2014)

    Article  ADS  Google Scholar 

  21. Wolf, R.N., et al.: Static-mirror ion capture and time focusing for electrostatic ion-beam traps and multi-reflection time-of-flight mass analyzers by use of an in-trap potential lift. Int. J. Mass Spectrom. 313, 8 (2012)

    Article  Google Scholar 

  22. Manura, D., Dahl, D.: Simion (r) 8.1 user manual (2013)

  23. Batteiger, V., et al.: Precision spectroscopy of the 3s-3p fine-structure doublet in Mg + . Phys. Rev. A 80, 022503 (2009)

    Article  ADS  Google Scholar 

  24. Moore, R.B., et al.: Production, transfer and injection of charged particles in traps and storage rings. Phys. Scr. 1995(T59), 93 (1995)

    Article  Google Scholar 

  25. Kreim, K.: Collinear Laser Spectroscopy of Potassium. Thesis, Ruprecht-Karls-Universität Heidelberg (2013)

  26. Ansbacher, W., Li, Y., Pinnington, E.: Precision lifetime measurement for the 3p levels of Mg II using frequency-doubled laser radiation to excite a fast ion beam. Phys. Lett. A 139(3), 165 (1989)

    Article  ADS  Google Scholar 

  27. Schwarz, S.: IonCool–A versatile code to characterize gas-filled ion bunchers and coolers (not only) for nuclear physics applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 566(2), 233 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 679038. P.F. and L.S. acknowledges support by the German Ministry for Education and Research (BMBF, 05P15HGCIA). We would like to express our gratitude to K. Blaum for many fruitful discussions and his continuous support to the project. We thank M. Bissell, M. Borge, J. Dilling, R. Garcia, M. Kowalska, R. Neugart, G. Neyens, M. Rosenbusch, R. Sanchez, and R. Wolf, for their help and advice, especially during the beginning of the project. We are grateful to Z. Andjelkovic, T. Murböck, and S. Schmidt for sharing their experience on a compact Mg ion source as well as to S. Sailer and L. Bartels for their earlier experimental contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Maier.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, F.M., Fischer, P., Heylen, H. et al. Simulations of a proof-of-principle experiment for collinear laser spectroscopy within a multi-reflection time-of-flight device. Hyperfine Interact 240, 54 (2019). https://doi.org/10.1007/s10751-019-1575-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1575-x

Keywords

PACS

Navigation