Advertisement

Hyperfine Interactions

, 240:51 | Cite as

The hyperfine puzzle of strong-field bound-state QED

  • W. NörtershäuserEmail author
  • J. Ullmann
  • L. V. Skripnikov
  • Z. Andelkovic
  • C. Brandau
  • A. Dax
  • W. Geithner
  • C. Geppert
  • C. Gorges
  • M. Hammen
  • V. Hannen
  • S. Kaufmann
  • K. König
  • F. Kraus
  • B. Kresse
  • Y. A. Litvinov
  • M. Lochmann
  • B. Maaß
  • J. Meisner
  • T. Murböck
  • A. F. Privalov
  • R. Sánchez
  • B. Scheibe
  • M. Schmidt
  • S. Schmidt
  • V. M. Shabaev
  • M. Steck
  • T. Stöhlker
  • R. C. Thompson
  • C. Trageser
  • M. Vogel
  • J. Vollbrecht
  • A. V. Volotka
  • C. Weinheimer
Article
  • 62 Downloads
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Abstract

The hyperfine splitting in heavy highly charged ions provide the means to test QED in extremely strong magnetic fields. In order to provide a meaningful test, the splitting has to be measured in H-like and Li-like ions to remove uncertainties from nuclear structure. This has been achieved at the experimental storage ring ESR but a discrepancy to the theoretical prediction of more than 7σ was observed. We report on these measurements as well as on NMR measurements that were performed to solve this issue.

Keywords

Hyperfine structure Highly charged ions Laser spectrosocpy Storage ring NMR Magnetic moment 

Notes

Acknowledgements

We acknowledge financial support from the German Ministry for Education and Research under grants 05P15RDFAA, 05P12PMFAE, 05P15PMFAA 06GI947 and 05P12R6FAN, the Helmholtz-Association under contract HGF-IVF-HCJRG-108 and the Helmholtz International Centre for FAIR (HIC for FAIR) within the LOEWE program by the federal state Hesse. M.L., C.T. and J.U. acknowledge support from HGS-HiRe. Calculations were funded by the Foundation for the advancement of theoretical physics and mathematics “BASIS” grant according to the research project No. 18-1-3-55-1 and also by the President of Russian Federation Grant No. MK-2230.2018.2. This work was also supported by SPSU (Grants No. 11.38.237.2015) and by SPSU-DFG (Grants No. 11.65.41.2017 and No. STO 346/5-1).

References

  1. 1.
    Hanneke, D., Fogwell, S., Gabrielse, G.: New determination of the fine structure constant from the electron g value and QED. Phys. Rev. Lett. 100(12), 120801 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Pastor, P.C., Giusfredi, G., Natale, P.D., Hagel, G., de Mauro, C., Inguscio, M.: Absolute frequency measurements of the \({2}^{3}{S}_{1}{\rightarrow }{2}^{3}{P}_{0,1,2}\) atomic helium transitions around 1083 nm. Phys. Rev. Lett. 92, 023001 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Kato, K., Skinner, T.D.G., Hessels, E.A.: Ultrahigh-precision measurement of the n = 2 triplet P fine structure of atomic helium using frequency-offset separated oscillatory fields. Phys. Rev. Lett. 121, 143002 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Wagner, A., Sturm, S., Köhler, F., Glazov, D.A., Volotka, A.V., Plunien, G., Quint, W., Werth, G., Shabaev, V.M., Blaum, K.: g Factor of Lithiumlike Silicon 28Si11+. Phys. Rev. Lett. 110, 033003 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Köhler, F., Blaum, K., Block, M., Chenmarev, S., Eliseev, S., Glazov, D., Goncharov, M., Hou, J., Kracke, A., Nesterenko, D., Novikov, Y., Quint, W., Ramirez, E., Shabaev, V., Sturm, S., Volotka, A., Werth, G.: Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. Commun. 7, 10246 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Gumberidze, A., Stöhlker, T., Banas, D., Beckert, K., Beller, P., Beyer, H.F., Bosch, F., Hagmann, S., Kozhuharov, C., Liesen, D., Nolden, F., Ma, X., Mokler, P.H., Steck, M., Sierpowski, D., Tashenov, S.: Quantum electrodynamics in strong electric fields: the ground-state lamb shift in hydrogenlike uranium. Phys. Rev. Lett. 94(22), 223001 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Beiersdorfer, P., Chen, H., Thorn, D.B., Träbert, E.: Measurement of the two-loop lamb shift in Lithiumlike U89+. Phys. Rev. Lett. 95, 233003 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Klaft, I., Borneis, S., Engel, T., Fricke, B., Grieser, R., Huber, G., Kühl, T., Marx, D., Neumann, R., Schröder, S., Seelig, P., Völker, L.: Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike 209Bi82+. Phys. Rev. Lett. 73(18), 2425 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Seelig, P., Borneis, S., Dax, A., Engel, T., Faber, S., Gerlach, M., Holbrow, C., Huber, G., Kühl, T., Marx, D., Meier, K., Merz, P., Quint, W., Schmitt, F., Tomaselli, M., Völker, L., Winter, H., Würtz, M., Beckert, K., Franzke, B., Nolden, F., Reich, H., Steck, M., Winkler, T.: Ground state hyperfine splitting of hydrogenlike 207Pb81+ by laser excitation of a bunched Ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81(22), 4824 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    López-Urrutia, J.R.C., Beiersdorfer, P., Widmann, K., Birkett, B.B., Martensson-Pendrill, A.M., Gustavsson, M.G.H.: Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions 185Re74+ and 187Re74+. Phys. Rev. A 57(3), 879 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Crespo López-Urrutia, J.R., Beiersdorfer, P., Savin, D.W., Widmann, K.: Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogenlike 165Ho66+ in an electron beam ion trap. Phys. Rev. Lett. 77(5), 826 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Beiersdorfer, P., Utter, S.B., Wong, K.L., López-Urrutia, J.R.C., Britten, J.A., Chen, H., Harris, C.L., Thoe, R.S., Thorn, D.B., Träbert, E., Gustavsson, M.G.H., Forssén, C., Mårtensson-Pendrill, A.M.: Hyperfine structure of hydrogenlike thallium isotopes. Phys. Rev. A 64, 032506 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Shabaev, V.M., Artemyev, A.N., Yerokhin, V.A., Zherebtsov, O.M., Soff, G.: Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Hannen, V., Anielski, D., Geppert, C., Jöhren, R., Kühl, T., Lochmann, M., López-Coto, R., Nörtershäuser, W., Ortjohann, H.W., Sánchez, R., Vollbrecht, J., Weinheimer, C., Winters, D.F.A.: Detection system for forward emitted photons at the experimental storage ring at GSI. J. Instrum. 8(09), P09018 (2013)CrossRefGoogle Scholar
  15. 15.
    Lochmann, M., Jöhren, R., Geppert, C., Andelkovic, Z., Anielski, D., Botermann, B., Bussmann, M., Dax, A., Frömmgen, N., Hammen, M., Hannen, V., Kühl, T., Litvinov, Y.A., Lopez-Coto, R., Stöhlker, T., Thompson, R.C., Vollbrecht, J., Volotka, A., Weinheimer, C., Wen, W., Will, E., Winters, D., Sanchez, R., Nörtershäuser, W.: Observation of the hyperfine transition in lithium-like bismuth 209Bi80+: towards a test of QED in strong magnetic fields. Phys. Rev. A 90(3), 030501 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Ullmann, J., Andelkovic, Z., Brandau, C., Dax, A., Geithner, W., Geppert, C., Gorges, C., Hammen, M., Hannen, V., Kaufmann, S., König, K., Litvinov, Y., Lochmann, M., Maaß, B., Meisner, J., Murböck, T., Sánchez, R., Schmidt, M., Schmidt, S., Steck, M., Stöhlker, T., Thompson, R., Trageser, C., Vollbrecht, J., Weinheimer, C., Nörtershäuser, W.: High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED. Nat. Commun. 8, 15484 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Sánchez, R., Lochmann, M., Jöhren, R., Andelkovic, Z., Anielski, D., Botermann, B., Bussmann, M., Dax, A., Frömmgen, N., Geppert, C., Hammen, M., Hannen, V., Kühl, T., Litvinov, Y.A., López-Coto, R., Stöhlker, T., Thompson, R.C., Vollbrecht, J., Wen, W., Weinheimer, C., Will, E., Winters, D., Nörtershäuser, W.: Laser spectroscopy measurement of the 2s -hyperfine splitting in lithium-like bismuth. J. Phys. B Atomic Mol. Phys. 50(8), 085004 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Ullmann, J., Andelkovic, Z., Dax, A., Geithner, W., Geppert, C., Gorges, C., Hammen, M., Hannen, V., Kaufmann, S., König, K., Litvinov, Y., Lochmann, M., Maass, B., Meisner, J., Murböck, T., Sánchez, R., Schmidt, M., Schmidt, S., Steck, M., Stöhlker, T., Thompson, R.C., Vollbrecht, J., Weinheimer, C., Nörtershäuser, W.: An improved value for the hyperfine splitting of hydrogen-like 209Bi82+. J. Phys. B: At. Mol. Phys. 48(14), 144022 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Raghavan, P.: Table of nuclear moments. At. Data Nucl. Data Tables 42(2), 189 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    Skripnikov, L.V., Schmidt, S., Ullmann, J., Geppert, C., Kraus, F., Kresse, B., Nörtershäuser, W., Privalov, A.F., Scheibe, B., Shabaev, V.M., Vogel, M., Volotka, A.V.: New nuclear magnetic moment of 209Bi: resolving the bismuth hyperfine puzzle. Phys. Rev. Lett. 120, 093001 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Sen’kov, R., Dmitriev, V.: Nuclear magnetization distribution and hyperfine splitting in Bi82+ ion. Nucl. Phys. A 706, 351 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Volotka, A.V., Glazov, D.A., Andreev, O.V., Shabaev, V.M., Tupitsyn, I.I., Plunien, G.: Test of many-electron QED effects in the hyperfine splitting of heavy high-Z ions. Phys. Rev. Lett. 108(7), 073001 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Fedotov, M.A., Yukhin, Y.M., Shubin, A.A., Udalova, T.A., Neorg, Z.h.: Study of the structure of di-2-ethylhexylphosphate of tetrahydroxotetraoxohexabismuthate (III) by NMR 31P, 17O, 209?i method. Khim. 43, 307 (1998)Google Scholar
  24. 24.
    Naslund, J., Persson, I., Sandstrom, M.: Solvation of the Bismuth(III) ion by water, dimethyl sulfoxide, N,N’-Dimethylpropyleneurea, and N,N-Dimethylthioformamide. An EXAFS, large-angle X-ray scattering, and crystallographic structural study. Inorg. Chem. 39(18), 4012 (2000)CrossRefGoogle Scholar
  25. 25.
    Morgan, K., Sayer, B.G., Schrobilgen, G.J.: Bismuth NMR spectroscopy: 209Bi and 19F high-resolution NMR spectra of the hexafluorobismuthate(V) Ion. J. Magn. Reson. (1969) 52(1), 139 (1983)CrossRefGoogle Scholar
  26. 26.
    Kluge, H.J., Beier, T., Blaum, K., Dahl, L., Eliseev, S., Herfurth, F., Hofmann, B., Kester, O., Koszudowski, S., Kozhuharov, C., Maero, G., Nörtershäuser, W., Pfister, J., Quint, W., Ratzinger, U., Schempp, A., Schuch, R., Stöhlker, T., Thompson, R., Vogel, M., Vorobjev, G., Winters, D., Werth, G.: HITRAP: a facility at GSI for highly charged ions. Adv. Quantum Chem. 53, 83 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    von Lindenfels, D., Wiesel, M., Glazov, D.A., Volotka, A.V., Sokolov, M.M., Shabaev, V.M., Plunien, G., Quint, W., Birkl, G., Martin, A., Vogel, M.: Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a penning trap. Phys. Rev. A 87, 023412 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Andelkovic, Z., Cazan, R., Nörtershäuser, W., Bharadia, S., Segal, D.M., Thompson, R.C., Jöhren, R., Vollbrecht, J., Hannen, V., Vogel, M.: Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions. Phys. Rev. A 87, 033423 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Schmidt, S., Billowes, J., Bissell, M., Blaum, K., Ruiz, R.G., Heylen, H., Malbrunot-Ettenauer, S., Neyens, G., Nörtershäuser, W., Plunien, G., Sailer, S., Shabaev, V., Skripnikov, L., Tupitsyn, I., Volotka, A., Yang, X.: The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED. Phys. Lett. B 779, 324 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • W. Nörtershäuser
    • 1
    Email author
  • J. Ullmann
    • 1
    • 2
    • 3
    • 4
  • L. V. Skripnikov
    • 5
    • 6
  • Z. Andelkovic
    • 7
  • C. Brandau
    • 7
    • 8
  • A. Dax
    • 9
  • W. Geithner
    • 7
  • C. Geppert
    • 1
    • 10
    • 11
  • C. Gorges
    • 1
    • 10
  • M. Hammen
    • 1
    • 10
    • 11
  • V. Hannen
    • 4
  • S. Kaufmann
    • 1
    • 10
  • K. König
    • 1
  • F. Kraus
    • 12
  • B. Kresse
    • 13
  • Y. A. Litvinov
    • 7
  • M. Lochmann
    • 1
  • B. Maaß
    • 1
  • J. Meisner
    • 14
  • T. Murböck
    • 15
  • A. F. Privalov
    • 13
  • R. Sánchez
    • 7
  • B. Scheibe
    • 12
  • M. Schmidt
    • 14
  • S. Schmidt
    • 1
  • V. M. Shabaev
    • 5
  • M. Steck
    • 7
  • T. Stöhlker
    • 2
    • 3
    • 7
  • R. C. Thompson
    • 16
  • C. Trageser
    • 7
    • 8
  • M. Vogel
    • 13
  • J. Vollbrecht
    • 4
  • A. V. Volotka
    • 2
    • 5
  • C. Weinheimer
    • 4
  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Helmholtz Institut JenaJenaGermany
  3. 3.Institut für Optik und QuantenelektronikFriedrich-Schiller-UniversitätJenaGermany
  4. 4.Institut für KernphysikWestfälische Wilhelms-Universität MünsterMünsterGermany
  5. 5.Department of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
  6. 6.National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics InstituteGatchinaRussia
  7. 7.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  8. 8.I. Physikalisches InstitutJustus-Liebig-Universität GießenGießenGermany
  9. 9.Paul Scherrer InstitutVilligen PSIVilligenSwitzerland
  10. 10.Institut für KernchemieUniversität MainzMainzGermany
  11. 11.Helmholtz Institut MainzJohannes Gutenberg-Universität MainzMainzGermany
  12. 12.Institut für Anorganische ChemiePhilipps-Universität MarburgMarburgGermany
  13. 13.Institut für FestkörperphysikTechnische Universität DarmstadtDarmstadtGermany
  14. 14.Physikalisch-Technische BundesanstaltBraunschweigGermany
  15. 15.Institut für Angewandte PhysikTechnische Universität DarmstadtDarmstadtGermany
  16. 16.QOLS Group, Department of PhysicsImperial College LondonLondonUK

Personalised recommendations