Skip to main content

Advertisement

Log in

The concept of laser-based conversion electron Mössbauer spectroscopy for a precise energy determination of 229mTh

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

229Th is the only nucleus currently under investigation for the development of a nuclear optical clock (NOC) of ultra-high accuracy. The insufficient knowledge of the first nuclear excitation energy of 229Th has so far hindered direct nuclear laser spectroscopy of thorium ions and thus the development of a NOC. Here, a nuclear laser excitation scheme is detailed, which makes use of thorium atoms instead of ions. This concept, besides potentially leading to the first nuclear laser spectroscopy, would determine the isomeric energy to 40 μeV resolution, corresponding to 10 GHz, which is a 104 times improvement compared to the current best energy constraint. This would determine the nuclear isomeric energy to a sufficient accuracy to allow for nuclear laser spectroscopy of individual thorium ions in a Paul trap and thus the development of a single-ion nuclear optical clock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ludlow, A.D., et al.: Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015)

    Article  ADS  Google Scholar 

  2. Huntemann, N., et al.: Single ion atomic clock with 3 ⋅10− 18 systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016)

    Article  ADS  Google Scholar 

  3. Chen, J.S., et al.: Sympathetic ground state cooling and time dilation shifts in an 27al+ optical clock. Phys. Rev. Lett. 118, 053002 (2017)

    Article  ADS  Google Scholar 

  4. Nicholson, T.L., et al.: Systematic evaluation of an atomic clock at 2 ⋅10− 18 total uncertainty. Nat. Commun. 6, 6896 (2015)

    Article  ADS  Google Scholar 

  5. McGrew, W.F., et al.: Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018)

    Article  ADS  Google Scholar 

  6. Peik, E., Tamm, C.: Nuclear laser spectroscopy of the 3.5 eV transition in 229Th. Eur. Phys. Lett. 61, 181 (2003)

    Article  ADS  Google Scholar 

  7. Campbell, C.J., et al.: Single ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012)

    Article  ADS  Google Scholar 

  8. Borisyuk, P.V., et al.: Trapping, retention and laser cooling of th3+ ions in a multisection linear quadrupole trap. Quantum Electron. 47, 406–411 (2017)

    Article  ADS  Google Scholar 

  9. Thielking, J., et al.: Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018)

    Article  ADS  Google Scholar 

  10. Rellergert, W.G., et al.: Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010)

    Article  ADS  Google Scholar 

  11. Kazakov, G.A., et al.: Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012)

    Article  ADS  Google Scholar 

  12. Jeet, J., et al.: Direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition. Phys. Rev. Lett. 114, 253001 (2015)

    Article  ADS  Google Scholar 

  13. Borisyuk, P.V., et al.: Experimental studies of thorium ion implantation from pulse laser plasma into thin silicon oxide layers. Laser Phys. Lett. 15, 056101 (2018)

    Article  ADS  Google Scholar 

  14. Stellmer, S., et al.: Attempt to optically excite the nuclear isomer in 229Th. Phys. Rev. A 97, 062506 (2018)

    Article  ADS  Google Scholar 

  15. Beck, B.R., et al.: Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007)

    Article  ADS  Google Scholar 

  16. Beck, B.R., et al.: Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh LLNL-PROC-415170 (2009)

  17. Minkov, N., Pálffy, A.: Reduced transition probabilities for the gamma decay of the 7.8 eV isomer in 229Th. Phys. Rev. Lett. 118, 212501 (2017)

    Article  ADS  Google Scholar 

  18. Tkalya, E.V., et al.: Radiative lifetime and energy of the low-energy isomeric level in 229Th. Phys. Rev. C 92, 054324 (2015)

    Article  ADS  Google Scholar 

  19. Tkalya, E.V., et al.: Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr. 53, 298–299 (1996)

    Article  ADS  Google Scholar 

  20. von der Wense, L., et al.: Towards a 229Th-based nuclear clock. Meas. Tech. 60, 1178 (2018)

    Article  Google Scholar 

  21. Kazakov, G.A., et al.: Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter. Nucl. Instrum. Meth. Phys. Res. A 735, 229 (2014)

    Article  ADS  Google Scholar 

  22. von der Wense, L., et al.: Direct detection of the 229Th nuclear clock transition. Nature 533, 47 (2016)

    Article  ADS  Google Scholar 

  23. Seiferle, B., et al.: Lifetime measurement of the 229Th nuclear isomer. Phys. Rev. Lett. 118, 042501 (2017)

    Article  ADS  Google Scholar 

  24. Seiferle, B., et al.: Feasibility study of internal conversion electron spectroscopy of 229mTh. Eur. Phys. J. A 53, 108 (2017)

    Article  ADS  Google Scholar 

  25. Seiferle, B., et al.: Towards a precise determination of the excitation energy of the Thorium nuclear isomer using a magnetic bottle spectrometer, submitted to. Eur. Phys. Jour. A, (2018). arXiv:1812.04621

  26. Natarajan, C.M., et al.: Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012)

    Article  ADS  Google Scholar 

  27. von der Wense, L., et al.: A laser excitation scheme for 229mTh. Phys. Rev. Lett. 119, 132503 (2017)

    Article  ADS  Google Scholar 

  28. Karpeshin, F.F., Trzhaskovskaya, M.B.: Impact of the electron environment on the lifetime of the 229Thm low-lying isomer. Phys. Rev. C 76, 054313 (2007)

    Article  ADS  Google Scholar 

  29. Varga, Z., et al.: Determination of the 229Th half-life. Phys. Rev. C 89, 064310 (2014)

    Article  ADS  Google Scholar 

  30. Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  31. Revière, J.C.: The work function of thorium. Proc. Phys. Soc. 80, 1 (1962)

    Article  Google Scholar 

  32. Haas, R., et al.: Development and characterization of a drop-on-demand inkjet printing system for nuclear target fabrication. Nucl. Instrum. Meth. A 874, 43 (2017)

    Article  ADS  Google Scholar 

  33. Zimmermann, K.: Experiments towards optical nuclear spectroscopy with Thorium-229. PhD Thesis, Leibniz University Hannover (2010)

  34. Hanna, S.J., et al.: A new broadly tunable (7.4-10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry. Int. J. Mass Spectrom. 279, 134 (2009)

    Article  Google Scholar 

  35. Ng, C.-Y.: Spectroscopy and dynamics of neutrals and ions by high-resolution infrared-vacuum ultraviolet photoionization and photoelectron methods, Chapter 19 in Frontiers of Molecular Spectroscopy, pp. 659–691 (2009)

    Chapter  Google Scholar 

  36. Kajava, T.T., et al.: Mode structure fluctuations in a pulsed dye laser. Appl. Opt. 31, 6987–6992 (1992)

    Article  ADS  Google Scholar 

  37. Goruganthu, R.R., Wilson, W.G.: Relative electron detection efficiency of microchannel plates from 0-3 keV. Rev. Sci. Instrum. 55, 2030 (1984)

    Article  ADS  Google Scholar 

  38. Arlt, N.: Preparatory measurements for a direct laser excitation of 229mTh, Bachelor Thesis, Ludwig-Maximilians-University of Munich, Germany. Online available at Zenodo. https://doi.org/10.5281/zenodo.1346638 (2017)

  39. von der Wense, L.: On the Direct Detection of 229mTh. Springer, Berlin (2018)

    Book  Google Scholar 

  40. Wandkowski, N., et al.: Modeling of electron emission processes accompanying radon-α-decays within electrostatic spectrometers. New. J. Phys. 15, 083040 (2013)

    Article  ADS  Google Scholar 

  41. Mehlstäubler, T.E., et al.: Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018)

    Article  ADS  Google Scholar 

  42. Flambaum, V.V.: Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Stellmer and T. Schumm for discussions and lending of the VUV excimer laser. For discussions we are also grateful to G. Kazakov, A. Pálffy, J. Weitenberg and E. Peik. This work was supported by DFG (Th956/3-2) and by the European Union’s Horizon 2020 research and innovation programme under grant agreement 6674732 ”nuClock”. The efforts at UCLA have been supported in part by DARPA (QuASAR program), ARO (W911NF-11-1-0369), NSF (PHY-1205311), NIST PMG (60NANB14D302), RCSA (20112810), and DOE Office of Nuclear Physics, Isotope Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars C. von der Wense.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von der Wense, L.C., Seiferle, B., Schneider, C. et al. The concept of laser-based conversion electron Mössbauer spectroscopy for a precise energy determination of 229mTh. Hyperfine Interact 240, 23 (2019). https://doi.org/10.1007/s10751-019-1564-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1564-0

Keywords

Navigation