Hyperfine Interactions

, 240:19 | Cite as

Influence of the manganese substitution on the cation distribution and magnetic structure of the spinel-related LiFe1-xMn1 + xO4 (x = 0.00, 0.25, 0.50, 0.75) system

  • M. Gracia
  • J. R. Gancedo
  • J. L. Gautier
  • J. de la Figuera
  • J. F. MarcoEmail author
Part of the following topical collections:
  1. Proceedings of the 16th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2018), 18-23 November 2018, Santiago de Chile, Chile


We report a modified synthesis for lithium manganese ferrites LiFe1-xMn1 + xO4 (x = 0.00, 0.25, 0.50, 0.75) based on the thermal decomposition of nitrates which produces purer materials when compared to other synthesis methods. The different oxidation states of the various cations and their preferences for particular crystal sites within the spinel-related structure lead to a complex cation distribution and magnetic properties which depend strongly on the composition. The large, almost complete, lithium occupancy of the tetrahedral sites in the spinel structure for particular compositions and the concomitant occurrence of unusual oxidation states of iron show how the synthesis method can be tailored to obtain materials which can have promising applications in the field of lithium-containing batteries.


Lithium iron manganese oxides Spinels Lithium batteries Mössbauer spectroscopy 


82.80.Ej 82.33.Pt 75.47.Lx 78.55.Hx 82.80.Pv 61.10.Nz 61.66.Fn 



This work was supported by CSIC-USACH cooperation program and Fondecyt (Chile) 1050178 and Dicyt 51831 EM_DAS projects. Financial support from the Spanish Ministry of Science, Innovation and Universities under project MAT2015-64110-C2-1-P, the Comunidad Autónoma de Madrid NANOMAGCOST-CM project with Ref. P2018/NMT-4321 and the European Commission through Project H2020 No. 720853 (Amphibian) is gratefully acknowledged.


  1. 1.
    Ohzuku, T., Ariyoshi, K., Takeda, S., Sakai, Y.: Synthesis and characterization of 5 V insertion material of Li[FeyMn2−y]O4 for lithium-ion batteries. Electrochim. Acta. 46, 2327–2336 (2001)CrossRefGoogle Scholar
  2. 2.
    Grygar, T., Bezdička, P., Vorm, P., Jordanova, N., Krtil, P.: Spinel Solid Solutions in the Li–Fe–Mn–O System. J. Solid State Chem. 161, 152–160 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Shigemura, H., Sakaebe, H., Kageyama, H., Kobayashi, H., West, A.R., Kanno, R., Morimoto, S., Nasu, S., Tabuchi, M.: Structure and Electrochemical Properties of LiFe[sub x]Mn[sub 2−x]O[sub 4] (0≤x≤0.5) Spinel as 5 V Electrode Material for Lithium Batteries. J. Electrochem. Soc. 148, A730–A736 (2001)CrossRefGoogle Scholar
  4. 4.
    Chen, C.J., Greenblatt, M., Waszczak, J.V.: Lithium insertion compounds of LiFe5O8, Li2FeMn3O8, and Li2ZnMn3O8. J. Solid State Chem. 64, 240–248 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    Wolska, E., Stempin, K., Krasnowska-Hobbs, O.: X-ray diffraction study on the distribution of lithium ions in LiMn2O4/LiFe5O8 spinel solid solutions. Solid State Ionics. 101–103, 527–531 (1997)Google Scholar
  6. 6.
    Bonsdorf, G., Schäffer, K., Langbein, H.: Mn(III) containing ferrites in the system La0.5Fe2.5-xMnxO4. Eur. J. Solid State Inorg. Chem. 34, 1051–1062 (1997)Google Scholar
  7. 7.
    Woodley, S.M., Catlow, C.R.A., Piszora, P., Stempin, K., Wolska, E.: Computer Modeling Study of the Lithium Ion Distribution in Quaternary Li–Mn–Fe–O Spinels. J. Solid State Chem. 153, 310–316 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Grygar, T., Bezdička, P., Piszora, P., Wolska, E.: Electrochemical reactivity of Li–Mn–O and Li–Fe–Mn–O spinels. J. Solid State Electrochem. 5, 487–494 (2001)CrossRefGoogle Scholar
  9. 9.
    Ríos, E., Chen, Y.-Y., Gracia, M., Marco, J.F., Gancedo, J.R., Gautier, J.L.: Influence of the partial replacement of Fe by Mn on the electrocatalytic activity for oxygen evolution in the Li(1−0.5x)Fe(1.5x+1)Mn(1−x)O4 spinel system. Electrochim. Acta. 47, 559–566 (2001)CrossRefGoogle Scholar
  10. 10.
    Tsuji, T., Nagao, M., Yamamura, Y., Tai, N.T.: Structural and thermal properties of LiMn2O4 substituted for manganese by iron. Solid State Ionics. 154–155, 381–386 (2002)CrossRefGoogle Scholar
  11. 11.
    Gracia, M., Marco, J.F., Gancedo, J.R., Gautier, J.L., Ríos, E.I., Menéndez, N., Tornero, J.: Characterization of the Mn–Li ferrite system Li1–0.5xFe1.5x+1Mn1–xO4 (0.2 ≤ x ≤ 1). J. Mater. Chem. 13, 844–851 (2003)CrossRefGoogle Scholar
  12. 12.
    Wende, C., Langbein, H.: Synthesis and characterization of compounds LixMn1+xFe2-2xO4 with spinel structure in the quasiternary system “LiO0,5 - MnOx - FeOx”. Cryst. Res. Technol. 41, 18–26 (2006)CrossRefGoogle Scholar
  13. 13.
    Wende, C., Olimov, K., Modrow, H., Wagner, F.E., Langbein, H.: Cation distribution, structure and magnetic properties of lithium manganese iron oxide spinel solid solutions. Mater. Res. Bull. 41, 1530–1542 (2006)CrossRefGoogle Scholar
  14. 14.
    Mueller, M.H., Heaton, L., Miller, K.T.: Determination of lattice parameters with the aid of a computer. Acta Crystallogr. 13, 828–829 (1960)CrossRefGoogle Scholar
  15. 15.
    Liu, Y.F., Feng, Q., Ooi, K., Coll, J.: Li+ Extraction/Insertion Reactions with LiAlMnO4 and LiFeMnO4 Spinels in the Aqueous Phase. Inteface Sci. 163, 130–136 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Wickham, D.G., Croft, W.J.: Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese. J. Phys. Chem. Solids. 7, 351–360 (1958)ADSCrossRefGoogle Scholar
  17. 17.
    Wei, Y.J., Yan, L.Y., Wang, C.Z., Xu, X.G., Wu, F., Chen, G.: Effects of Ni Doping on [MnO6] Octahedron in LiMn2O4. J. Phys. Chem. B. 108, 18547–18551 (2004)CrossRefGoogle Scholar
  18. 18.
    Gautier, J.L., Ríos, E., Gracia, M., Marco, J.F., Gancedo, J.R.: Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3−xO4(1≥x≥0) spinel films prepared by low-temperature spray pyrolysis. Thin Solid Films. 311, 51–57 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Alburquenque, D., Troncoso, L., Denardin, J.C., Butera, A., Padmasree, K.D., Ortiz, J., Herrera, F., Marco, J.F., Gautier, J.L.: Structural and physicochemical properties of nickel manganite NiMn 2 O 4-δ synthesized by sol-gel and ultra sound assisted methods. J. Alloys Comp. 672, 307–316 (2016)CrossRefGoogle Scholar
  20. 20.
    Alburquenque, D., Denardin, J.C., Troncoso, L., Marco, J.F., Gautier, J.L.: Substitution effects on the bulk and surface properties of (Li,Ni)Mn2O4. Ionics. 24, 977–987 (2018)CrossRefGoogle Scholar
  21. 21.
    Beyreuther, E., Grafström, S., Eng, L.M.: XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys. Rev. B. 73, 155425 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Sánchez-Arenillas, M., Oujja, M., Moutinho, F., de la Figuera, J., Cañamares, M.V., Quesada, A., Castillejo, M., Marco, J.F.: Bulk and surface characterisation of micrometer-thick cobalt ferrite films grown by IR PLD. Appl. Surf. Sci. 470, 917–922 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    Prieto, P., Marco, J.F., Prieto, J.E., Ruiz-Gómez, S., Pérez, L., del Real, R.P., Vázquez, M., de la Figuera, J.: Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers. Appl. Surf. Sci. 436, 1067–1074 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Robertson, A.D., Tukamoto, H., Irvine, J.T.S.: Li[sub 1+x]Fe[sub 1−3x]Ti[sub 1+2x]O[sub 4] (0.0 ≤ x ≤ 0.33) Based Spinels: Possible Negative Electrode Materials for Future Li-Ion Batteries. J. Electrochem Soc. 146, 3958–3962 (1999)CrossRefGoogle Scholar
  25. 25.
    Sakai, Y., Ariyoshi, K., Ohzuku, T.: In situ 57Fe Mössbauer Investigation of Solid-State Redox Reactions of Lithium Insertion Electrodes for Advanced Batteries. Hyperfine Interact. 139/140, 67–76 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Química Física “Rocasolano”MadridSpain
  2. 2.Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de ChileEstación CentralChile

Personalised recommendations