Systematic study of magnetization reversal in square Fe nanodots of varying dimensions in different orientations

Abstract

Ferromagnetic nanoparticles can be used for data storage, spintronics, and other applications. Especially vortex states are often suggested to be used to store information. Due to the shape anisotropy dominating in nanoparticles, magnetization reversal processes can be expected to depend not only on the dimensions, but also on the orientation with respect to the external magnetic field. While several papers evaluate magnetization dynamics, including vortex precessions, in round nanodots, square nanodots are less often investigated. Here we report on different magnetization reversal processes found in micromagnetic simulations of square Fe nanodots with lateral dimensions between 100 nm and 500 nm and thicknesses between 10 nm and 50 nm. Choosing magnetic field orientations parallel to one of the square edges and under 45, seven different reversal mechanisms were found, most of them including a single-vortex state, while in some cases two, three or more vortex-antivortex pairs were found. The ground state, i.e. the magnetic state at vanishing external magnetic field, was often a single-vortex state, making the nanodot with the respective dimensions suitable for data storage applications. The stability of this state, i.e. the field range over which it existed, depended strongly on the lateral dimensions and the dot thickness and was largest for small lateral dimensions and large thicknesses.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ehrmann, A., Komraus, S., Blachowicz, T., Domino, K., Nees, M.-K., Jakobs, P.-J., Leiste, H., Mathes, M., Schaarschmidt, M.: Pseudo exchange bias due to rotational anisotropy. J. Magn. Magn. Mater. 412, 7–10 (2016)

    ADS  Article  Google Scholar 

  2. 2.

    Ehrmann, A., Blachowicz, T., Komraus, S., Nees, M.-K., Jakobs, P.-J., Leiste, H., Mathes, M., Schaarschmidt, M.: Magnetic properties of square Py nanowires: irradiation dose and geometry dependence. J. Appl. Phys. 117, 173903 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    Pagnanelli, F., Altimari, P., Bellagamba, M., Granata, G., Moscardini, E., Schiavi, P.G., Toro, L.: Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology. Electrochim. Acta 155, 228–235 (2015)

    Article  Google Scholar 

  4. 4.

    Romero, M., Pardo, H., Faccio, R., Suescun, L., Vazquez, S., Laborda, I., Fernandez-Werner, L., Acosta, A., Castiglioni, J., Mombru, A.W.: A Study on the polymer precursor formation and microstructure evolution of square-shaped (La0.5Ba0.5)(Mn0.5Fe0.5)O3 ceramic nanoparticles. J. Ceramic Sci. Tech. 6, 221–230 (2015)

    Google Scholar 

  5. 5.

    Blachowicz, T., Ehrmann, A.: Square nano-magnets as bit-patterned media with doubled possible data density. Mater. Today Proc. 4, S226–S231 (2017)

    Article  Google Scholar 

  6. 6.

    Ehrmann, A., Blachowicz, T.: Interaction between magnetic nanoparticles in clusters. AIMS Mater. Sci. 4, 383–390 (2017)

    Article  Google Scholar 

  7. 7.

    Mouhib, M., Benayad, N., Azhari, M.: Mixed spin (1/2,1) transverse Ising nanoparticles. J. Magn. Magn. Mater. 419, 325–337 (2016)

    ADS  Article  Google Scholar 

  8. 8.

    Kaneyoshi, T.: Shape dependences of magnetic properties in 2D Ising nano-particles. Phase Trans. 86, 404–418 (2013)

    Article  Google Scholar 

  9. 9.

    Hellwig, O., Heyderman, L.J., Petracic, O., Zabel, H.: Competing Interactions in Patterned and Self-Assembled Magnetic Nanostructures. Springer Tracts Modern Phys. 246, 189–234 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    Lemos, C.G.O., Figueiredo, W., Santos, M.: Exchange bias for core/shell magnetic nanoparticles. Physica A Stat. Mech. Appl. 433, 148–160 (2015)

    ADS  Article  Google Scholar 

  11. 11.

    Fabian, A., Czerner, M., Heiliger, C., Elm, M.T., Hofmann, D.M., Klar, P.J.: Domain formation in rectangular magnetic nanoparticle assemblies. Phys. Rev. B 98, 054401 (2018)

    ADS  Article  Google Scholar 

  12. 12.

    Mohler, G., Harter, A.W.: Micromagnetic investigation of resonance frequencies in ferromagnetic particles. J. Appl. Phys. 97, 10E313 (2005)

    Article  Google Scholar 

  13. 13.

    Kozlov, A.G., Pustovalov, E.V., Kolesnikov, A.G., Chebotkevich, L.A., Samardak, A.S.: Induced magnetic anisotropies dependent micromagnetic structure of epitaxial Co nanostrip arrays. J. Magn. Magn. Mater. 459, 118–124 (2018)

    ADS  Article  Google Scholar 

  14. 14.

    Tillmanns, A., Blachowicz, T.: Adjusting exchange bias and coercivity of magnetic layered systems with varying anisotropies. J. Appl. Phys. 109, 083923 (2011)

    ADS  Article  Google Scholar 

  15. 15.

    Kan, J.J., Lubarda, M.V., Chan, K.T., Uhlir, V., Scholl, A., Lomakin, V., Fullerton, E.E.: Periodic chiral magnetic domains in single-crystal nickel nanowires. Phys. Rev. Mater. 2, 064406 (2018)

    Article  Google Scholar 

  16. 16.

    Donahue, M.J., Porter, D.G.: OOMMF User’s Guide, Version 1.0 Interagency Report NISTIR 6376. National Institute of Standards and Technology, Gaithersburg (1999)

    Google Scholar 

  17. 17.

    Gilbert, T.L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443 (2004)

    ADS  Article  Google Scholar 

  18. 18.

    Kneller, E.F., Hawig, R.: The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588 (1991)

    ADS  Article  Google Scholar 

  19. 19.

    Lemcke, O.: Thetaevolve module for OOMMF. available: http://www.nanoscience.de/groupr/stm-spstm/projects/temperature/download.shtml (2002)

  20. 20.

    Ehrmann, A., Blachowicz, T.: Vortex and double-vortex nucleation during magnetization reversal in Fe nanodots of different dimensions, J. Magn. Magn. Mater., submitted

Download references

Acknowledgments

This work was supported by Volkswagen Foundation grant “Adaptive Computing with Electrospun Nanofiber Networks” no. 93679, by the SUT Rector Grant 14/990/RGJ18/0099 as well as the internal SUT project BK-229/RIF/2017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Ehrmann.

Additional information

This article is part of the Topical Collection on Proceedings of the 2nd International Workshop on Magnetic Materials and Nanomaterials (MMN 2018), Boumerdes, Algeria, 1-4 July 2018

Edited by Abderrahim Guittoum

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ehrmann, A., Blachowicz, T. Systematic study of magnetization reversal in square Fe nanodots of varying dimensions in different orientations. Hyperfine Interact 239, 48 (2018). https://doi.org/10.1007/s10751-018-1523-1

Download citation

Keywords

  • Magnetic nanodots
  • Micromagnetic simulation
  • Magnetization reversal
  • Vortex
  • Antivortex