Skip to main content

Advertisement

Log in

Gravity, antimatter and the Dirac-Milne universe

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We review the main arguments against antigravity, a different acceleration of antimatter relative to matter in a gravitational field, discussing and challenging Morrison’s, Good’s and Schiff’s arguments. Following Price, we show that, very surprisingly, the usual expression of the Equivalence Principle is violated by General Relativity when particles of negative mass are supposed to exist, which may provide a fundamental explanation of MOND phenomenology, obviating the need for Dark Matter. Motivated by the observation of repulsive gravity under the form of Dark Energy, and by the fact that our universe looks very similar to a coasting (neither decelerating nor accelerating) universe, we study the Dirac-Milne cosmology, a symmetric matter-antimatter cosmology where antiparticles have the same gravitational properties as holes in a semiconductor. Noting the similarities with our universe (age, SN1a luminosity distance, nucleosynthesis, CMB angular scale), we focus our attention on structure formation mechanisms, finding strong similarities with our universe. Additional tests of the Dirac-Milne cosmology are briefly reviewed, and we finally note that a crucial test of the Dirac-Milne cosmology will be soon realized at CERN next to the ELENA antiproton decelerator, possibly as early as fall 2018, with the AEgIS, ALPHA-g and Gbar antihydrogen gravity experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perez, P., Doser, M., Bertsche, W.: Does antimatter fall up? https://cds.cern.ch/record/2243009/files/vol57-issue1-p039-e.pdf

  2. Kellerbauer, A., Amoretti, M., Belov, A., Bonomi, G., Boscolo, I., Brusa, R., Büchner, M., Byakov, V., Cabaret, L., Canali, C., et al.: Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 351 (2008)

    Article  ADS  Google Scholar 

  3. Bertsche, W.A.: Prospects for comparison of matter and antimatter gravitation with ALPHA-g. Phil. Trans. R. Soc. A 376, 20170265 (2017)

    Article  ADS  Google Scholar 

  4. Indelicato, P., Chardin, G., Grandemange, P., Lunney, D., Manea, V., Badertscher, A., Crivelli, P., Curioni, A., Marchionni, A., Rossi, B., et al.: The Gbar project, or how does antimatter fall? Hyperfine Interact. 228, 141 (2014)

    Article  ADS  Google Scholar 

  5. Smorra, C., et al.: A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371 (2017)

    Article  ADS  Google Scholar 

  6. Schiff, L.I.: Gravitational properties of antimatter. Proc. Natl. Acad. Sci 45, 69 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  7. Morrison, P.: Approximate nature of physical symmetries. Am. J. Phys. 26, 358 (1958)

    Article  ADS  Google Scholar 

  8. Good, M.L.: K\(^{0}_{2}\) and the equivalence principle. Phys. Rev. 121, 311 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  9. Price, R.H.: Negative mass is positively amusing. Am. J. Phys. 61, 216 (1993)

    Article  ADS  Google Scholar 

  10. Benoit-Lévy, A., Chardin, G.: Introducing the Dirac-Milne universe. A&A 537, A78 (2012)

    Article  ADS  Google Scholar 

  11. Tegmark, M., et al.: The three-dimensional power spectrum of galaxies from the Sloan digital sky survey. Ap. J. 606, 702 (2004)

    Article  ADS  Google Scholar 

  12. Nieto, M.M., Goldman, T.: The arguments against ‘antigravity’ and the gravitational acceleration of antimatter. Phys. Rep. 205, 221 (1991). and references therein

    Article  ADS  Google Scholar 

  13. Tsidil’kovskii, I.M.: Electrons and holes in an inertial-force field. Sov. Phys. Uspekhi 18, 161 (1975)

    Article  ADS  Google Scholar 

  14. Dubinski, J., da Costa, L.N., Goldwirth, D.S., Lecar, M., Piran, T.: Void evolution and the large-scale structure. Ap. J. 410, 458 (1993)

    Article  ADS  Google Scholar 

  15. Piran, T.: On gravitational repulsion. Gen. Rel. Grav. 29, 1363 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chardin, G., Rax, J.-M.: CP violation: A matter of antigravity? Phys. Lett. B 282, 256 (1992)

    Article  ADS  Google Scholar 

  17. Scherk, J.: Antigravity: A crazy idea? Phys. Lett. B 88, 265 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bell, J.S.: In: Bloch, P., Pavlopoulos, P., Klapisch, R (eds.) Fundamental Symmetries. Plenum Press (1987)

  19. Adelberger, E.G., Gundlach, J.H., Heckel, B.R., Hoedl, S., Schlamminger, S.: Torsion balance experiments: a low-energy frontier of particle physics. Prog. Part. Nucl. Phys. 62, 102 (2009)

    Article  ADS  Google Scholar 

  20. Touboul, P., et al.: MICROSCOPE mission: first results of a space test of the equivalence principle. Phys. Rev. Lett. 119, 231101 (2017)

    Article  ADS  Google Scholar 

  21. Alves, D.S.M., Jankowiak, M., Saraswat, P.: Experimental constraints on the free fall acceleration of antimatter, arXiv:0907.4110 (2009)

  22. Ulmer, S., et al.: High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524, 196 (2015)

    Article  ADS  Google Scholar 

  23. Bondi, H.: Negative mass in general relativity. Rev. Mod. Phys. 29, 423 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  24. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? J. High Energy Phys. 2013, 62 (2013). arXiv:1207.3123

    Article  MathSciNet  Google Scholar 

  25. Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983)

    Article  ADS  Google Scholar 

  26. Blanchet, L., Le Tiec, A.: Model of dark matter and dark energy based on gravitational polarization. Phys. Rev. D 78, 024031 (2008). arXiv:0804.3518

    Article  ADS  Google Scholar 

  27. Holstein, B.R.: Klein’s paradox. Am. J. Phys. 66, 507 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. Goldman, T., Nieto, M.M., Sandberg, V.: Kaons, quantum mechanics and gravity. Mod. Phys. Lett. 7, 3455 (1992)

    Article  ADS  Google Scholar 

  29. Christenson, J.H., Cronin, J.W., Fitch, V.L., Turlay, R.: Evidence for the 2π-decay of the K\(^{0}_{2}\) meson. Phys. Rev. Lett. 13, 138 (1964)

    Article  ADS  Google Scholar 

  30. Bell, J.S., Perring, J.K.: 2π-decay of the K\(^{0}_{2}\) meson. Phys. Rev. Lett. 13, 348 (1964)

    Article  ADS  Google Scholar 

  31. Omnès, R.: The possible role of elementary particle physics in cosmology. Phys. Rep. 3, 1 (1972)

    Article  ADS  Google Scholar 

  32. Cohen, A.G., de Rujula, A., Glashow, S.L.: A matter-antimatter universe? Ap. J. 495, 539 (1998)

    Article  ADS  Google Scholar 

  33. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65, 45 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  34. Witten, E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80, 381 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  35. Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Ap. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  36. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrop. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  37. Barcelo, C., Visser, M.: Twilight for the energy conditions? Int. J. Mod. Phys. D11, 1553 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  38. Mbarek, S., Paranjape, M.B.: Negative mass bubbles in de Sitter spacetime. Phys. Rev. D 90, 101502 (2014)

    Article  ADS  Google Scholar 

  39. Morris, M.S., Thorne, K.S., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446 (1988)

    Article  ADS  Google Scholar 

  40. Hawking, S.W.: On the Hoyle-Narlikar theory of gravitation. R. Soc. London Proc. Series A 286, 313 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  41. Hoyle, F., Narlikar, J.V.: Mach’s principle and the creation of matter. Proc. R. Soc. Lond. A 273, 1 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  42. The Planck Collaboration, Akrami, Y., et al.: Planck 2018 results. I. Overview and the cosmological legacy of Planck, arXiv:1807.06205, submitted to A&A

  43. Nielsen, J.T., Guffanti, A., Sarkar, S.: Marginal evidence for cosmic acceleration from Type Ia supernovae. Sci. Rep. 6, 35596 (2016)

    Article  ADS  Google Scholar 

  44. Tutusaus, I., Lamine, B., Dupays, A., Blanchard, A.: Is cosmic acceleration proven by local cosmological probes? A&A 602, A73 (2017)

    Article  ADS  Google Scholar 

  45. Milne, E.A.: World structure and the expansion of the universe. Z. Astrophys. 6, 1 (1933)

    ADS  MATH  Google Scholar 

  46. Melia, F., Shevchuk, A.S.H.: The Rh = c t universe. MNRAS 419, 2579 (2012). arXiv:1109.5189

    Article  ADS  Google Scholar 

  47. Chodorowski, M.J.: Cosmology under Milne’s shadow. Publ. Astron. Soc. Australia 22, 287 (2005)

    Article  ADS  Google Scholar 

  48. Rood, R.T., Bania, T.M., Baiser, D.S.: The saga of 3He. Science 95, 804 (2002)

    Article  ADS  Google Scholar 

  49. Manfredi, G., Rouet, J.-L., Miller, B., Chardin, G.: Cosmological structure formation with negative mass. Phys. Rev. D 98, 023514 (2018). arXiv:1804.03067

    Article  ADS  Google Scholar 

  50. Ahmadi, M., et al.: The ALPHA Collaboration, Observation of the 1S-2S transition in trapped antihydrogen. Nature 541, 506 (2017)

    Article  ADS  Google Scholar 

  51. Charman, A.E., et al.: The ALPHA Collaboration, Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nature Comm. 4, 1785 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Chardin.

Additional information

This article is part of the Topical Collection on Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12–16 March 2018

Edited by Paul Indelicato, Dirk van der Werf and Yves Sacquin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chardin, G., Manfredi, G. Gravity, antimatter and the Dirac-Milne universe. Hyperfine Interact 239, 45 (2018). https://doi.org/10.1007/s10751-018-1521-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-018-1521-3

Keywords

Navigation