Hyperfine Interactions

, 239:26 | Cite as

Towards sympathetic cooling of single (anti-)protons

  • Teresa MeinersEmail author
  • Malte Niemann
  • Johannes Mielke
  • Matthias Borchert
  • Nicolas Pulido
  • Juan M. Cornejo
  • Stefan Ulmer
  • Christian Ospelkaus
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018


We present methods to manipulate and detect the motional state and the spin state of a single antiproton or proton which are currently under development within the BASE (Baryon Antibaryon Symmetry Experiment) collaboration. These methods include sympathetic laser cooling of a single (anti-)proton using a co-trapped atomic ion as well as quantum logic spectroscopy with the two particles and could be implemented within the collaboration for state preparation and state readout in the antiproton g-factor measurement experiment at CERN. In our project, these techniques shall be applied using a single 9Be+ ion as the atomic ion in a Penning trap system at a magnetic field of 5 T. As an intermediate step, a controlled interaction of two beryllium ions in a double-well potential as well as sympathetic cooling of one ion by the other shall be demonstrated.


Penning traps Laser cooling Motional coupling Atomic ion g-factor Antiproton 



We acknowledge funding from QUEST, LUH, PTB, ERC StG “QLEDS”, and DFG through SFB 1227 “DQ-mat”.

We acknowledge support by Tobias Florin and Julian Pick in building laser systems and designing a proton source.


  1. 1.
    Ding, Y., Kostelecký, V.A.: Lorentz-violating spinor electrodynamics and Penning traps. Phys. Rev. D 94, 056008 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Schneider, G., et al.: Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science 358, 1081–1084 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Smorra, C., et al.: A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371–374 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Dehmelt, H., Ekström, P.: Proposed g-2/ω z experiment on single stored electron or positron. Bull. Am. Phys. Soc. 18, 727 (1973)Google Scholar
  5. 5.
    Heinzen, D.J., Wineland, D.J.: Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. Phys. Rev. A 42, 2977–2994 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    Hilico, L., et al.: Preparing single ultra-cold antihydrogen atoms for free-fall in GBAR. International Journal of Modern Physics: Conference Series 30, 1460269 (2014)Google Scholar
  7. 7.
    Niemann, M., et al.: Proceedings of the Sixth meeting on CPT and lorentz symmetry, pp 41–44. World Scientific, Singapore (2014)CrossRefGoogle Scholar
  8. 8.
    Meiners, T., et al.: Towards quantum logic inspired cooling and detection for single (anti-)protons. JPS Conf. Proc. 18, 011006 (2017)Google Scholar
  9. 9.
    Segal, D.M., Wunderlich, C.: Physics with trapped charged particles, pp 48–69. Imperial College Press, London (2014)Google Scholar
  10. 10.
    Smorra, et al.: BASE – The baryon antibaryon symmetry experiment. Eur. Phys. J. Special Topics 224, 3055–3108 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Meiners, T., et al.: Proceedings of the seventh meeting on CPT and lorentz symmetry, pp 85–88. World Scientific, Singapore (2017)CrossRefGoogle Scholar
  12. 12.
    Hannig, S., et al.: A highly stable monolithic enhancement cavity for second harmonic generation in the ultraviolet. Rev. Sci. Instrum. 89, 013106 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Brown, K.R., et al.: Coupled quantized mechanical oscillators. Nature 471, 196–199 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut für QuantenoptikLeibniz Universität HannoverHannoverGermany
  2. 2.Ulmer Fundamental Symmetries LaboratoryRIKENWakoJapan
  3. 3.Physikalisch Technische BundesanstaltBraunschweigGermany

Personalised recommendations