Skip to main content

Structural and Mössbauer studies of nanocrystalline Mn2+-doped Fe3O4 particles

Abstract

Nanocrystalline Mn2+-doped magnetite (Fe 3O4) particles of the composition Mn x Fe 3−y O4 \(\left (x = 0.0, 0.1, 0.2, 0.3, 0.4 \text { and } 0.5; y = \frac {2x}{3}\right )\), prepared using chemical precipitation under reflux with the Mn2+ ions substituting for Fe3+ ions rather than Fe2+ ones, are characterized mainly with XRD and 57Fe Mössbauer spectroscopy. All samples were found to have spinel-related structures with average lattice parameters that increase linearly with the Mn2+ concentration, x. The particle size for the samples varied from ∼8 nm to 23 nm. The oxidation of Fe2+ to Fe3+ at surface layers of the Fe 3O4 nanoparticles leading to the formation of maghemite (γ-Fe 2O3) was found to considerably weaken with increasing Mn2+ concentration. The percentage of the nanoparticles that exhibit short range magnetic ordering due to cationic clustering and/or superparamagnetism increases from 17% to 32% with increasing x. The dependence of isomer shifts of the 57Fe nuclei at the tetrahedral and octahedral sites on dopant Mn2+ concentration is emphasized. The electric quadrupole shifts indicate that the Mn x Fe 3−y O4 particles undergo Verwey transition. The effective hyperfine magnetic fields at both crystallographic sites decrease with increasing Mn2+ concentration reflecting a size effect as well as a weakening in the magnetic super-exchange interaction. The Mössbauer data indicate that for x ≤ 0.2, the dopant Mn2+ ions substitute solely for octahedral Fe3+ ions whereas for x > 0.2 they substitute for Fe3+ at both tetrahedral and octahedral sites.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Chen, D., Xu, R.: Mater. Res. Bull. 33, 1015 (1998)

    Article  Google Scholar 

  2. 2.

    Lyubutin, I.S., Lin, C.R., Yu, V.K., Dmitrieva, T.V., Chiang, R.K.: J. Appl. Phys. 106, 034311 (2009)

    ADS  Article  Google Scholar 

  3. 3.

    Marand, Z.R., Farimani, M.H.R., Shahtahmasebi, N.: J. Nanomed 1, 238 (2004)

    Google Scholar 

  4. 4.

    Berry, F.J., Greaves, C., Helgason, Ö., MacManus, J.: J. Mater. Chem. 9, 223 (1999)

    Article  Google Scholar 

  5. 5.

    Velásquez, A.A., Urquijo, J.P.: J. SAR. 1, 11 (2013)

    Article  Google Scholar 

  6. 6.

    Kwon, W.H., Lee, J.-G., Choi, W.O., Chae, K.P.: J. Magn. 18, 26 (2013)

    Article  Google Scholar 

  7. 7.

    Kandpal, N.D., Sah, N., Loshali, R., Joshi, R., Parasad, J.: J. Sci. Ind. Res. 73, 87 (2014)

    Google Scholar 

  8. 8.

    Topsøe, H., Dumesic, J.A., Boudart, M.: J. DE. Phys. 12, C6 (1974)

    Google Scholar 

  9. 9.

    Sorescu, M., Mehaila-Tarabasanu, D., Diamandescu, L.: J. Appl. Phys. Lett. 72, 2047 (1998)

    ADS  Article  Google Scholar 

  10. 10.

    Wang, C., Yang, S., Chang, H., Peng, Y., Li, J.: J. Mol. Cata. A 376, 13 (2013)

    Article  Google Scholar 

  11. 11.

    Sorescua, M., Tarabasanu-Mihaila, D., Diamandescu, L.: J. Mater. Lett. 57, 1867 (2003)

    Article  Google Scholar 

  12. 12.

    Attfield, J.P.: J. Jpn. Soc. Powder Powder Metall. 61, S43 (2014)

    Article  Google Scholar 

  13. 13.

    Dézsi, I., Fetzer, C.S., Gombkötő, Á., Szűcs, I., Gubicza, J., Ungár, T.: J. Appl. Phys. 103, 104312 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    Nikiforov, V.N., Ignatenko, A.N., Irkhin, V.Y.: J. Exp. Theor. Phys. 124, 304 (2017)

    ADS  Article  Google Scholar 

  15. 15.

    Lodhia, J., Mandarano, G., Ferris, N.J., Eu, P., Cowell, S.F.: Biomed. Imaging Interv. J. 6, e12 (2010)

    Article  Google Scholar 

  16. 16.

    Gorski, C.A., Scherer, M.M.: Am. Mineral. 95, 1017 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    Deepak, F.L., Bañobre-López, M., Carbó-Argibay, E., Cerqueira, M.F., Piñeiro-Redondo, Y., Rivas, J., Thompson, C.M., Kamali, S., Rodríguez-Abreu, C., Kovnir, K., Kolen’ko, Y.V.: J. Phys. Chem. C 119, 119477 (2015)

    Article  Google Scholar 

  18. 18.

    Varsheny, D., Yogi, A.: Mater. Chem. Phys. 128, 489 (2011)

    Article  Google Scholar 

  19. 19.

    Taufiq, A., Sunaryono, Putra, E.G.R., Okazawa, A., Watnabe, I., Kojima, N., Pratapa, S., Darminto: J. Supercond. Nov. Magn. 28, 2855 (2015)

    Article  Google Scholar 

  20. 20.

    Choi, Y. S., Yoon, H.Y., Lee, J. S., Wu, J. H., Kim, Y. K.: J. Appl. Phys. 115, 17B517 (2014)

    Article  Google Scholar 

  21. 21.

    Lagarec, K., Rancourt, D., Denis, G.: Recoil-mössbauer spectral analysis software for windows. University of Ottawa, Ottawa (1998)

    Google Scholar 

  22. 22.

    Chaki, S.H., Malek, T.J., Chaudhary, M.D., Tailor, J.P., Deshpande, M.P.: Adv. Nat. Sci.: Nanosci. Nanotechnol. 6, 035009 (2015)

    ADS  Google Scholar 

  23. 23.

    Petkov, V., Cozzoli, P.D., Buonsanti, R., Cingolani, R., Ren, Y.: J. Am. Chem. Soc. 131, 14264 (2009)

    Article  Google Scholar 

  24. 24.

    Kim, W., Suh, C.-Y., Cho, S.-W., Roh, K.-M., Kwon, H., Song, K., Shon, I.-J.: Talanta 94, 348–352 (2012)

    Article  Google Scholar 

  25. 25.

    Denton, A.R., Ashcroft, N.W.: Phys. Rev. A 43, 3161 (1991)

    ADS  Article  Google Scholar 

  26. 26.

    Winter, M.: http://www.webelements.com, Ⓒ1993-2017, The University of Sheffield and WebElements Ltd. UK

  27. 27.

    Daou, T.J., Pourroy, G., Be’gin-Colin, S., Grene‘che, J.M., Ulhaq-Bouillet, C., Legare’, P., Bernhardt, P., Leuvrey, C., Rogez, G.: Chem. Mater. 18, 4399–4404 (2006)

    Article  Google Scholar 

  28. 28.

    Johnson, C.E., Johnson, J.A., Hah, H.Y., Cole, M., Gray, S., Kolesnichenko, V., Kucheryavy, P., Goloverda, G.: Hyperfine Interact. 237, 27 (2016)

    ADS  Article  Google Scholar 

  29. 29.

    Neese, F.: Inorg. Chim. Acta 337, 181–192 (2002)

    Article  Google Scholar 

  30. 30.

    Galperin, F.M.: Electron configuration and magnetic moment of 3d transition metal atoms. Phys. Stat. Sol. (b) 70, K133—K137 (1975)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by Sultan Qaboos University (Research Grant: SQU/Sci/Phys/04/16). KSA acknowledges the support of Sultan Qaboos University in the form of a PhD scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. M. Widatallah.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3–8 September 2017.

Edited by Valentin Semenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Rashdi, K.S., Widatallah, H.M., Al Ma’Mari, F. et al. Structural and Mössbauer studies of nanocrystalline Mn2+-doped Fe3O4 particles. Hyperfine Interact 239, 3 (2018). https://doi.org/10.1007/s10751-017-1476-9

Download citation

Keywords

  • Magnetite
  • Maghemite
  • Doping
  • Defects
  • Nanocrystalline particles
  • Mössbauer spectroscopy
  • XRD