Skip to main content
Log in

Temperature-induced iron oxidation in bafertisite Ba2Fe\({}_{4}^{2+}\)Ti2(Si2O7)2O2(OH)2F2: X-ray diffraction and Mössbauer spectroscopy study

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The high-temperature behavior of bafertisite was studied by combination of techniques in order to characterize the temperature-induced iron oxidation associated with deprotonation of an octahedral layer. The chemical formula of bafertisite from Darai-Pioz alkaline complex (Tajikistan) determined by electron-microprobe analyzes and Mössbauer spectroscopy is Ba 2.11(Fe\({}_{2.70}^{2+}\)Fe\({}_{0.17}^{3+}\)Mn 1.09Zr 0.04Na 0.03) (Ti 1.96Nb 0.07)(Si 2 O 7)2 O 2(OH 1.29 O 0.65 F 0.06)F 2. In situ high-temperature powder X-ray diffraction revealed abrupt shift of reflections to the high-angle region and reduction of their intensity at T > 525 C. The Mössbauer spectroscopy studies indicated that the crystal structure of bafertisite contains Fe in octahedral sites as predominantly ferric ions with Fe 3+/ ΣFe = 0.06, whereas bafertisite annealed at T = 600 C has Fe in the same position with Fe 3+/ ΣFe up to 0.39. The differential scanning calorimetry and thermogravimetric analyzes reveal the occurrence of a broad exothermic effect at T ∼ 537 C associated with the mass loss corresponding to deprotonation. Since in the studied sample of bafertisite, Fe 2+ apfu strongly prevails over OH apfu, the stoichiometric (charged-balanced) high-temperature oxidized modification cannot be obtained. In the paper, the high-temperature behavior of bafertisite is discussed and compared to that of astrophyllite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferraris, G., Bloise, A., Cadoni, M.: Mesopor. Mater. 107, 108–112 (2008)

    Article  Google Scholar 

  2. Lin, Z., Almeida Paz, F.A., Rocha, J.: Layered titanosilicates. In: Brigatti, M.F., Mottana, A. (eds.) EMU Notes in Mineralogy, vol. 11, pp 123–145 (2011)

  3. Cámara, F., Sokolova, E., Abdu, Y.A., Pautov, L.A.: Can. Miner. 54, 49–63 (2016)

    Article  Google Scholar 

  4. Semenov, E.I., Peishan, Z.: Sci. Rec. (Beijing) 3, 652–655 (1959)

    Google Scholar 

  5. Lykova, I.S., Pekov, I.V., Kononkova, N.N., Shpachenko, A.K.: Geol. Ore. Dep. 52(8), 837–842 (2010)

    Article  ADS  Google Scholar 

  6. Guan, Y.S., Simonov, V.I., Belov, N.V.: Dokl. Akad. Nauk SSSR. 149, 1416–1419 (1963)

    Google Scholar 

  7. Ferraris, G., Ivaldi, G., Khomyakov, A.P., Soboleva, S.V., Belluso, E., Pavese, A.: Eur. J. Mineral. 8, 241–249 (1996)

    Article  ADS  Google Scholar 

  8. Li, G., Xiong, M., Shi, N., Ma, Z.: Acta Geol. Sinica. 85(5), 1028–1035 (2011)

    Article  Google Scholar 

  9. Yang, Z., Cressey, G., Welch, M.: Powder Diffr. 14(1), 22–24 (1999)

    Article  ADS  Google Scholar 

  10. Sokolova, E., Cámara, F.: Miner Mag. 10.1180/minmag. 081, 010 (2017)

    Google Scholar 

  11. Ferraris, G.: Z. Krillogr. 223, 76–84 (2008)

    Google Scholar 

  12. Russell, R.L., Guggenheim, S.: Can Miner. 37, 711–729 (1999)

    Google Scholar 

  13. Chon, C.-M., Lee, C.-K., Song, Y., Kim, S.A.: Phys. Chem. Miner. 33, 289–299 (2006)

    Article  ADS  Google Scholar 

  14. Ventruti, G., Zema, M., Scordari, F., Pedrazzi, G.: Am. Miner. 93, 632–643 (2008)

    Article  ADS  Google Scholar 

  15. Zema, M., Ventruti, G., Lacalamita, M., Scordari, F.: Am. Miner. 95, 1458–1466 (2010)

    Article  ADS  Google Scholar 

  16. Murad, E., Wagner, U.: Clay Miner. 31, 45–52 (1996)

    Article  ADS  Google Scholar 

  17. Güttler, B., Niemann, W., Redfern, S.A.T.: Miner. Mag. 53, 591–602 (1989)

    Article  Google Scholar 

  18. Veith, J.A., Jackson, M.L.: Clays Clay Miner. 22, 345–353 (1974)

    Article  ADS  Google Scholar 

  19. Zhitova, E.S., Krivovichev, S.V., Hawthorne, F.C., Krzhizhanovskaya, M.G., Zolotarev, A.A., Abdu, Ya.A., Yakovenchuk, V.N., Pakhomovsky, Ya.A., Goncharov, A.G.: Phys. Chem. Miner. https://doi.org/10.1007/s00269-017-0886-1 (in press)

  20. Piilonen, P.C., LaLonde, A.E., McDonald, A.M., Gault, R.A., Larsen, A.O.: Can Miner. 41, 1–26 (2003)

    Article  Google Scholar 

  21. Sokolova, E., Cámara, F., Hawthorne, F.C., Cirotti, M.: Miner. Mag. 81, 143–150 (2017)

    Article  Google Scholar 

  22. Bruker, A.X.S.: Karlsruhe, Germany (2009)

  23. Belousov, R., Filatov, S.: Glass Phys. Chem. 33(3), 271–275 (2007)

    Article  Google Scholar 

  24. Bubnova, R.S., Firsova, V.A., Filatov, S.K.: Glass Phys. Chem. 39(3), 347–350 (2013)

    Article  Google Scholar 

  25. Langreiter, T., Kahlenberg, V.: Institute of mineralogy and petrography. University of Innsbruck, Austria (2014)

    Google Scholar 

  26. Shino, I., Li, Z.: Hyperfine Interact. 116, 189–196 (1998)

    Article  Google Scholar 

  27. Wu, G., Wang, Y., Zhang, S., Ding, H.: Acta Petrologica Mineralogica et Analitica 1(1), 23–28 (1982). in Chinese with English abstract

    Google Scholar 

  28. Cámara, F., Arletti, R., Sokolova, E., Hawthorne, H.: IMA 2014 Conference of Proceedings, p. 346 (2014)

Download references

Acknowledgments

The study was supported through the Russian Science Foundation (grant 17-77-10023). The experiments were carried out using facilities of XRD and Geomodel Resource Centers of St. Petersburg University. We thank Fernando Cámara for valuable comments and Guido Langouche for handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena S. Zhitova.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3–8 September 2017

Edited by Valentin Semenov

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 21.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhitova, E.S., Zolotarev, A.A., Krivovichev, S.V. et al. Temperature-induced iron oxidation in bafertisite Ba2Fe\({}_{4}^{2+}\)Ti2(Si2O7)2O2(OH)2F2: X-ray diffraction and Mössbauer spectroscopy study. Hyperfine Interact 238, 96 (2017). https://doi.org/10.1007/s10751-017-1468-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-017-1468-9

Keywords

Navigation