Skip to main content
Log in

Evolution of synchrotron-radiation-based Mössbauer absorption spectroscopy for various isotopes

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Synchrotron-radiation-based Mössbauer spectroscopy that yields absorption type Mössbauer spectra has been applied to various isotopes. This method enables the advanced measurement by using the excellent features of synchrotron radiation, such as Mössbauer spectroscopic measurement under high-pressures. Furthermore, energy selectivity of synchrotron radiation allows us to measure 40K Mössbauer spectra, of which observation is impossible by using ordinary radioactive sources because the first excited state of 40K is not populated by any radioactive parent nuclides. Moreover, this method has flexibility of the experimental setup that the measured sample can be used as a transmitter or a scatterer, depending on the sample conditions. To enhance the measurement efficiency of the spectroscopy, we developed a detection system in which a windowless avalanche photodiode (APD) detector is combined with a vacuum cryostat to detect internal conversion electrons adding to X-rays accompanied by nuclear de-excitation. In particular, by selecting the emission from the scatterer sample, depth selective synchrotron-radiation-based Mössbauer spectroscopy is possible. Furthermore, limitation of the time window in the delayed components enables us to obtain narrow linewidth in Mössbauer spectra. Measurement system that records velocity dependent time spectra and energy information simultaneously realizes the depth selective and narrow linewidth measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruby, S.L.: J. Phys. 35, C6–209 (1974)

    Google Scholar 

  2. Gerdau, E., Rüffer, R., Winkler, R.H., Tolksdorf, W., Klages, C.P., Hannon, J.P.: Phys. Rev. Lett. 54, 835 (1985)

    Article  ADS  Google Scholar 

  3. Cohen, R.L., Miller, G.L., West, K.W.: Phys. Rev. Lett. 41, 381 (1978)

    Article  ADS  Google Scholar 

  4. Seto, M., Kitao, S., Kobayashi, Y., Haruki, R., Mitsui, T., Yoda, Y., Zhang, X.W., Maeda, Y.u.: Phys. Rev. Lett. 84, 566 (2000)

    Article  ADS  Google Scholar 

  5. Chumakov, A.I., Zelepukhin, M.V., Smirnov, G.V., van Bürck, U., Rüffer, R., Hollatz, R., Rüter, H.D., Gerdau, E.: Phys. Rev. B. 41, 9545 (1990)

    Article  ADS  Google Scholar 

  6. Smirnov, G.V., van Bürck, U., Chumakov, A.I., Baron, A.Q.R., Rüffer, R.: Phys. Rev. B 55, 5811 (1997)

    Article  ADS  Google Scholar 

  7. Hastings, J.B., Siddons, D.P., van Bürck, U., Hollatz, R., Bergmann, U.: Phys. Rev. Lett. 66, 770 (1991)

    Article  ADS  Google Scholar 

  8. Röhlsberger, R., Toellner, T.S., Sturhahn, W., Quast, K.W., Alp, E.E., Bernhard, A., Burkel, E., Leupold, O., Gerdau, E.: Phys. Rev. Lett. 84, 1007 (2000)

    Article  ADS  Google Scholar 

  9. Coussement, R., Cottenier, S., L’abbé, C.: Phys. Rev., B 54, 16003 (1996)

    Article  ADS  Google Scholar 

  10. Seto, M., Masuda, R., Higashitaniguchi, S., Kitao, S., Kobayashi, Y., Inaba, C., Mitsui, T., Yoda, Y.: Phys. Rev. Lett. 102, 217602 (2009)

    Article  ADS  Google Scholar 

  11. Seto, M., Masuda, R., Higashitaniguchi, S., Kitao, S., Kobayashi, Y., Inaba, C., Mitsui, T., Yoda, Y.: J. Phys. Conf. Ser. 217, 012002 (2010)

    Article  Google Scholar 

  12. Matsuoka, T., Fujihisa, H., Hirao, N., Ohishi, Y., Mitsui, T., Masuda, R., Seto, M., Yoda, Y., Shimizu, K., Machida, A., Aoki, K.: Phys. Rev. Lett. 107, 025501 (2011)

    Article  ADS  Google Scholar 

  13. Mibu, K., Seto, M., Mitsui, T., Yoda, Y., Masuda, R., Kitao, S., Kobayashi, Y., Suharyadi, E., Tanaka, M., Tsunoda, M., Yanagihara, H., Kita, E.: Hyperfine Interact. 217, 127–135 (2013)

    Article  ADS  Google Scholar 

  14. Nakano, T., Fukuda, N., Seto, M., Kobayashi, Y., Masuda, R., Yoda, Y., Mihara, M., Nozoe, Y.: Phys. Rev. B 91, 140101R (2015)

    Article  ADS  Google Scholar 

  15. Yamaura, J., Ohsumi, H., Sugimoto, K., Tsutsui, S., Yoda, Y., Takeshita, S., Tokuda, A., Kitao, S., Kurokuzu, M., Seto, M., Yamauchi, I., Ohgushi, K., Takigawa, M., Arima, T., Hiroi, Z.: J. Phys. Conf. Ser. 391, 012112 (2012)

    Article  Google Scholar 

  16. Kurokuzu, M., Kitao, S., Kobayashi, Y., Saito, M., Masuda, R., Mitsui, T., Yoda, Y., Seto, M.: Hyperfine Interact. 226, 687–691 (2014)

    Article  ADS  Google Scholar 

  17. Masuda, R., Kobayashi, Y., Kitao, S., Kurokuzu, M., Saito, M., Yoda, Y., Mitsui, T., Iga, F., Seto, M.: Appl. Phys. Lett. 104, 082411 (2014)

    Article  ADS  Google Scholar 

  18. Masuda, R., Kobayashi, Y., Kitao, S., Kurokuzu, M., Saito, M., Yoda, Y., Mitsui, T., Hosoi, H., Kobayashi, H., Kitagawa, K., Seto, M.: Scientific Reports 6, 20861 (2016)

    Article  ADS  Google Scholar 

  19. Gee, L.B., Lin, C., Jenney, F.E. Jr., Adams, M.W.W., Yoda, Y., Masuda, R., Saito, M., Kobayashi, Y., Tamasaku, K., Lerche, M., Seto, M., Riordan, C.G., Ploskonka, A., Power, P.P., Cramer, S.P., Lauterbach, L.: Inorg. Chem. 55, 6866 (2016)

    Article  Google Scholar 

  20. Segi, T., Masuda, R., Kobayashi, R., Tsubota, T., Yoda, Y., Seto, M.: Hyperfine Interact. 237, 7 (2016)

    Article  ADS  Google Scholar 

  21. Tsutsui, S., Masuda, R., Kobayashi, Y., Yoda, Y., Mizuuchi, K., Shimizu, Y., Hidaka, H., Yanagisawa, T., Amitsuka, H., Iga, F., Seto, M.: J. Phys. Soc. Jpn 85, 083704 (2016)

    Article  ADS  Google Scholar 

  22. Dunford, C.L., Kinsey, R.R.: Nudat system for Access to Nuclear Data, IAEA-NDS-205 (BNL-NCS-65687), IAEA, Vienna, Austria (July 1998). the NuDat data base, version of 23-Feb-2000

  23. Shvyd’ko, Yu. V. et al.: Phys. Rev. Lett. 85, 495 (2000)

    Article  ADS  Google Scholar 

  24. Baron, A.Q.R. et al.: Phys. Rev. B 51, 16384 (1995)

    Article  ADS  Google Scholar 

  25. Kikuta, S.: Hyperfine Interact. 90, 335 (1994)

    Article  ADS  Google Scholar 

  26. Koyama, I. et al.: Jpn. J. Appl. Phys. Pt. 1 35, 6297 (1996)

    Article  Google Scholar 

  27. Chumakov, A.I. et al.: Phys. Rev. Lett. 75, 549 (1995)

    Article  ADS  Google Scholar 

  28. Please see, for example, Spijkerman, J.J.: (1971) CEMS, in 1..I. Gruverman (ed.), Mössbauer Effect Methodology Vol. 7, Plenum Press, New York, p.85; Tricker, M. J.: (1981) CEMS and its recent development, in J.G. Stevens and G.K. Shenoy (eds.), Mössbauer Spectroscopy and its Chemical Applications, Adv. in Chem, Ser. No.194, American Chemical Society, Washington DC

  29. Masuda, T., Okubo, S., Hara, H., Hiraki, T., Kitao, S., Miyamoto, Y., Okai, K., Ozaki, R., Sasao, N., Seto, M., Uetake, S., Yamaguchi, A., Yoda, Y., Yoshimi, A., Yoshimura, K.: Rev. Sci. Instrum. 88, 063105 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (S) of Grant No. 24221005. The experiments at SPring-8 were performed with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (2009A0086, 2017A3581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Seto.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017

Edited by Valentin Semenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seto, M., Masuda, R., Kobayashi, Y. et al. Evolution of synchrotron-radiation-based Mössbauer absorption spectroscopy for various isotopes. Hyperfine Interact 238, 78 (2017). https://doi.org/10.1007/s10751-017-1446-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-017-1446-2

Keywords

Navigation