Skip to main content

Laser resonance ionization spectroscopy on lutetium for the MEDICIS project


The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

This is a preview of subscription content, access via your institution.


  1. 1.

    dos Santos Augusto, R. M., et al.: CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility. Appl. Sci. 4, 265 (2014)

    Article  Google Scholar 

  2. 2.

    Letokhov, V. S.: Laser Photoionization Spectroscopy, p 353. Academic Press, Orlando (1987)

    Google Scholar 

  3. 3.

    Wendt, K., et al.: Laser resonance ionization for efficient and selective ionization of rare species. Nucl. Instrum. Methods Phys. Res. B 204, 325 (2003)

    ADS  Article  Google Scholar 

  4. 4.

    Tishchenko, V. K., et al.: Radiopharmaceuticals based on polyamino-phosphonic acids labeled with α-, β-, and γ-emitting radionuclides (Review). Pharm. Chem. J. 49(7), 3 (2015)

    Article  Google Scholar 

  5. 5.

    Ljungberg, M., et al.: MIRD Pamphlet No. 26: Joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radio-pharmaceutical therapy. J. Nucl. Med. 57, 151 (2016)

    Article  Google Scholar 

  6. 6.

    Bekov, G.I., Vidolova-Angelova, E.P.: Optimal scheme for multistage photoionization of lutetium atoms by laser radiation. Sov. J. Quant. Electron. 11(1), 137 (1981)

    ADS  Article  Google Scholar 

  7. 7.

    Miller, C. M., Nogar, N. S.: Autoionizing and high-lying Rydberg states of lutetium atoms. AIP Conf. Proc. 90, 90 (1982)

    ADS  Article  Google Scholar 

  8. 8.

    Krustev, Th.B., et al.: Determination of traces of lutetium in geological samples by resonance ionization spectroscopy. J. Anal. Atom. Spectrom. 8, 1029 (1993)

    Article  Google Scholar 

  9. 9.

    Xu, C. B., et al.: The study of autoionizing states of lutetium atoms by resonance ionization spectroscopy. J. Phys. B: Atom. Molec. Opt. Phys. 26, 2821 (1993)

    ADS  Article  Google Scholar 

  10. 10.

    D’yachkov, A. B., et al.: Selective photoionisation of lutetium isotopes. Quant. Electron. 42(10), 953 (2012)

    Article  Google Scholar 

  11. 11.

    D’yachkov, A. B., et al.: Photoionization spectroscopy for laser extraction of the radioactive isotope Lu-177. Appl. Phys. B: Lasers Opt. 121, 425 (2015)

    ADS  Article  Google Scholar 

  12. 12.

    Naubereit, P., et al.: Resonance ionization spectroscopy of sodium Rydberg levels using difference frequency generation of high-repetition-rate pulsed Ti: Sapphire lasers. Phys. Rev. A 93(5), 052518 (2016)

    ADS  Article  Google Scholar 

  13. 13.

    Geppert, Ch: Laser systems for on-line laser ion sources. Nucl. Instrum. Methods Phys. Res. B 266, 4354 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    Kurucz, R. L., Bell, B.: Atomic Line Data, Smithsonian Astrophysical Observatory. Cambridge, Kurucz CD-ROM No. 23 (1995)

  15. 15.

    Ralchenko, Yu., Kramida, A. E, Reader, J., NIST ASD Team: NIST Atomic Spectra Database (version 5), [Online]. Available: [2016, September]. National Institute of Standards and Technology, Gaithersburg, MD

Download references

Author information



Corresponding author

Correspondence to V. Gadelshin.

Additional information

This article is part of the Topical Collection on Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: “Recent Achievements and Future Prospects” (LASER 2016), Poznań, Poland, 16–19 May 2016

Edited by Krassimira Marinova, Magdalena Kowalska and Zdzislaw Błaszczak

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gadelshin, V., Cocolios, T., Fedoseev, V. et al. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project. Hyperfine Interact 238, 28 (2017).

Download citation


  • Lutetium
  • Isotope separation
  • Laser ionization spectroscopy


  • 28.60. + s
  • 29.30.-h
  • 32.10.Bi
  • 32.30.-r
  • 32.80.-t
  • 42.62.Fi
  • 87.19.xj