RILIS-ionized mercury and tellurium beams at ISOLDE CERN


This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes were determined to be 6 % and >18 % respectively.


  1. 1.

    Fedosseev, V., Berg, L., Fedorov, D., Fink, D., Launila, O., Losito, R., Marsh, B., Rossel, R., Rothe, S., Seliverstov, M., Sjodin, A., Wendt, K.: Upgrade of the resonance ionization laser ion source at ISOLDE on-line isotope separation facility: New lasers and new ion beams. Rev. Sci. Instrum. 83(2), 02A903 (2012)

    Article  Google Scholar 

  2. 2.

    Rothe, S., Day Goodacre, T., Fedorov, D., Fedosseev, V., Marsh, B., Molkanov, P., Rossel, R., Seliverstov, M., Veinhard, M., Wendt, K.: Laser ion beam production at CERN-ISOLDE: New features – More possibilities. Nuc. Instrum. Methods Phys. Res. Sec. B: Beam Inter. Mater. Atoms 376, 91–96 (2016)

    ADS  Article  Google Scholar 

  3. 3.

    Kugler, E.: The ISOLDE facility. Hyp. Inter. 129(1/4), 23–42 (2000)

    ADS  Article  Google Scholar 

  4. 4.

    Podshivalov, A., Matveev, O., Smith, B., Winefordner, J.: A novel and efficient excitation- and ionization-scheme for laser resonance ionization of mercury. Spectrochim. Acta Part B: Atom. Spectros. 54(13), 1793–1799 (1999)

    ADS  Article  Google Scholar 

  5. 5.

    Fedosseev, V., Berg, L., Lebas, N., Launila, O., Lindroos, M., Losito, R., Marsh, B., Ȯsterdahl, F., Pauchard, T., Transtrȯmer, G., Vannesjȯ, J.: ISOLDE RILIS: New beams, new facilities. Nuc. Instrum. Methods Phys. Res. Sect. B: Beam Inter. Mater. Atoms 266(19–20), 4378–4382 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    Sundell, S., Ravn, H.: Ion source with combined cathode and transfer line heating. Nuc. Instrum. Methods Phys. Res. Sec. B: Beam Inter. Mater. Atoms 70(1–4), 160–164 (1992)

    ADS  Article  Google Scholar 

  7. 7.

    Gaffney, L., Day Goodacre, T., Andreyev, A., Seliverstov, M., Althubiti, N., Andel, B., Antalic, S., Atanasov, D., Barzakh, A., Billowes, J., Blaum, K., Cocolios, T., Cubiss, J., Farooq-Smith, G., Fedosseev, V., Fedorov, D., Ferrer, R., Flanagan, K., Ghys, L., Gottberg, A., Granados, C., Herfurth, F., Huyse, M., Jenkins, D., Kisler, D., Kreim, S., Kron, T., Kudryavtsev, Y., Lunney, D., Lynch, K., Manea, V., Marsh, B., Mendonca, T., Molkanov, P., Neidherr, D., Raabe, R., Raeder, S., Ramos, J., Rapisarda, E., Rosenbusch, M., Rossel, R., Rothe, S., Schweikhard, L., Sels, S., Stora, T., Tsekhanovich, I., Van Beveren, C., Van Duppen, P., Veinhard, M., Wadsworth, R., Wienholtz, F., Welker, A., Wendt, K., Wilson, G., Witkins, S., Wolf, R., Zuber, K.: In-source laser spectroscopy of mercury isotopes. CERN INTC (P-424) (2014)

  8. 8.

    Ahn, T., Al-Azri, H., Bloch, T., Butler, P., Bree, N., Bȧck, T., Bȯnig, S., Cederkȧll, J., Cederwall, B., Darby, I., Diriken, J., O’Donnell, D., Fahlander, C., Gaffney, L., Grahn, T., Hadinia, B., Huyse, M., Jenkins, D., Johnson, A., Joshi, P., Joss, D., Julin, R., Krȯll, T., Leske, J., Nara Singh, B., Nicholls, A., Page, R., Pakarinen, J., Paul, E., Pietralla, N., Rahkila, P., Rapisarda, E., Sandzelius, M., Scheck, M., Simpson, J., Smith, J., Wadsworth, R., Van Duppen, P., Voulot, D., Wenander, F., Werner, V.: Coulomb excitation of 116Te and 118Te: A study of collectivity above the Z=50 shell gap. CERN-INTC, 11 (2011)

  9. 9.

    Day Goodacre, T., Fedorov, D., Fedosseev, V., Forster, L., Marsh, B., Rossel, R., Rothe, S., Veinhard, M.: Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa–Dye ISOLDE RILIS. Nuc. Instrum. Methods Phys. Res. Sec. A: Accel. Spectrom. Detect. Assoc. Equip. 830, 510–514 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    Fedosseev, V., Marsh, B., Fedorov, D., Kȯster, U., Tengborn, E.: Ionization Scheme Development at the ISOLDE RILIS. Hyp. Inter. 162(1–4), 15–27 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    Rossel, R., Fedosseev, V., Marsh, B., Richter, D., Rothe, S., Wendt, K.: Data acquisition, remote control and equipment monitoring for ISOLDE RILIS. Nuc. Instrum. Methods Phys. Res. Sec. B: Beam Inter. Mater. Atoms 317, 557–560 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    Liu, Y., Baktash, C., Beene, J., Havener, C., Krause, H., Schultz, D., Stracener, D., Vane, C., Geppert, C., Kessler, T., Wies, K., Wendt, K.: Time profiles of ions produced in a hot-cavity resonant ionization laser ion source. Nuc. Instrum. Methods Phys. Res. Sec. B: Beam Inter. Mater. Atoms 269(23), 2771–2780 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    Rothe, S., Marsh, B., Mattolat, C., Fedosseev, V., Wendt, K.: A complementary laser system for ISOLDE RILIS. J. Phys. Conf. Ser. 312(5), 052020 (2011)

    Article  Google Scholar 

  14. 14.

    Kramida, A., Ralchenko, Y., Reader, J.: The NIST ASD Team: NIST Atomic Spectra Database (ver 5.2). [Online, accessed: 22/07/2016] (2015)

  15. 15.

    Birch, K., Downs, M.: An updated Edlén equation for the refractive index of air. Metrologia 30(3), 155–162 (1993)

    ADS  Article  Google Scholar 

  16. 16.

    Marsh, B., Day Goodacre, T., Fink, D., Rothe, S., Seliverstov, M., Imai, N., Sjodin, M., Rossel, R.: Suitability test of a high beam quality Nd:YVO4 industrial laser for the ISOLDE RILIS installation. Technical report, CERN, Geneva (2013)

  17. 17.

    de Laeter, J., Bȯhlke, J., De Bièvre, P., Hidaka, H., Peiser, H., Rosman, K., Taylor, P.: Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure Appl. Chem., 75(6) (2003)

  18. 18.

    Day Goodacre, T., Billowes, J., Catherall, R., Cocolios, T., Crepieux, B., Fedorov, D., Fedosseev, V., Gaffney, L., Giles, T., Gottberg, A., Lynch, K., Marsh, B., Mendonċa, T., Ramos, J., Rossel, R., Rothe, S., Sels, S., Sotty, C., Stora, T., Van Beveren, C., Veinhard, M.: Blurring the boundaries between ion sources: The application of the RILIS inside a FEBIAD type ion source at ISOLDE. Nuc. Instrum. Methods Phys. Res. Sec. B: Beam Inter. Mater. Atoms 376, 39–45 (2016)

  19. 19.

    Day Goodacre, T.: Developments of the ISOLDE-RILIS for radioactive ion beam production and the results of their application in the study of exotic mercury isotopes. PhD thesis, The University of Manchester (2017)

Download references

Author information



Corresponding author

Correspondence to T. Day Goodacre.

Additional information

This article is part of the Topical Collection on Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: “Recent Achievements and Future Prospects” (LASER 2016), Poznań, Poland, 16–19 May 2016

Edited by Krassimira Marinova, Magdalena Kowalska and Zdzislaw Błaszczak

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Day Goodacre, T., Billowes, J., Chrysalidis, K. et al. RILIS-ionized mercury and tellurium beams at ISOLDE CERN. Hyperfine Interact 238, 41 (2017).

Download citation


  • Mercury
  • Tellurium
  • Laser ion source