Hyperfine Interactions

, 238:12 | Cite as

Investigation of two-frequency Paul traps for antihydrogen production

  • Nathan Leefer
  • Kai Krimmel
  • William Bertsche
  • Dmitry Budker
  • Joel Fajans
  • Ron Folman
  • Hartmut Häffner
  • Ferdinand Schmidt-Kaler
Open Access
Article
  • 285 Downloads
Part of the following topical collections:
  1. Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: “Recent Achievements and Future Prospects” (LASER 2016), Poznań, Poland, 16–19 May 2016

Abstract

Radio-frequency (rf) Paul traps operated with multifrequency rf trapping potentials provide the ability to independently confine charged particle species with widely different charge-to-mass ratios. In particular, these traps may find use in the field of antihydrogen recombination, allowing antiproton and positron clouds to be trapped and confined in the same volume without the use of large superconducting magnets. We explore the stability regions of two-frequency Paul traps and perform numerical simulations of small samples of multispecies charged-particle mixtures of up to twelve particles that indicate the promise of these traps for antihydrogen recombination.

Keywords

Atomic physics Paul trap Two-frequency Ion traps Antihydrogen 

References

  1. 1.
    Lüders, G.: Proof of the TCP theorem, vol. 2 (1957)Google Scholar
  2. 2.
    Parthey, C.G., Matveev, A., Alnis, J., Bernhardt, B., Beyer, A., Holzwarth, R., Maistrou, A., Pohl, R., Predehl, K., Udem, T., Wilken, T., Kolachevsky, N., Abgrall, M., Rovera, D., Salomon, C., Laurent, P., Hänsch, T.W.: Improved measurement of the hydrogen 1S-2S transition frequency. Phys. Rev. Lett. 107(20), 1–5 (2011)CrossRefGoogle Scholar
  3. 3.
    Hardy, W.N., Berlinsky, A.J., Whitehead, L.A.: Magnetic resonance studies of gaseous atomic hydrogen at low temperatures. Phys. Rev. Lett. 42, 1042–1045 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    Amole, C., Ashkezari, M.D., Baquero-Ruiz, M., Bertsche, W., Bowe, P.D., Butler, E., Capra, A., Cesar, C.L., Charlton, M., Deller, a., Donnan, P.H., Eriksson, S., Fajans, J., Friesen, T., Fujiwara, M.C., Gill, D.R., Gutierrez, A., Hangst, J.S., Hardy, W.N., Hayden, M.E., Humphries, A.J., Isaac, C.A., Jonsell, S., Kurchaninov, L., Little, A., Madsen, N., McKenna, J.T.K., Menary, S., Napoli, S.C., Nolan, P., Olchanski, K., Olin, A., Pusa, P., Rasmussen, C.Ø., Robicheaux, F., Sarid, E., Shields, C.R., Silveira, D.M., Stracka, S., So, C., Thompson, R.I., van der Werf, D.P., Wurtele, J.S.: Resonant quantum transitions in trapped antihydrogen atoms. Nature 483(7390), 439–443 (2012)Google Scholar
  5. 5.
    Andresen, G.B., Ashkezari, M.D., Baquero-Ruiz, M., Bertsche, W., Bowe, P.D., Butler, E., Cesar, C.L., Chapman, S., Charlton, M., Deller, A., Eriksson, S., Fajans, J., Friesen, T., Fujiwara, M.C., Gill, D.R., Gutierrez, A., Hangst, J.S., Hardy, W.N., Hayden, M.E., Humphries, A.J., Hydomako, R., Jenkins, M.J., Jonsell, S., Jørgensen, L.V., Kurchaninov, L. , Madsen, N., Menary, S., Nolan, P., Olchanski, K., Olin, A., Povilus, A., Pusa, P., Robicheaux, F., Sarid, E., Seif el Nasr, S., Silveira, D.M., So, C., Storey, J.W., Thompson, R.I., van der Werf, D.P., Wurtele, J.S., Yamazaki, Y.: Trapped antihydrogen. Nature 468, 673 (2010)Google Scholar
  6. 6.
    Andresen, G.B., Ashkezari, M.D., Baquero-Ruiz, M., Bertsche, W., Bowe, P.D., Butler, E., Cesar, C.L., Charlton, M., Deller, A., Eriksson, S., Fajans, J., Friesen, T., Fujiwara, M.C., Gill, D.R., Gutierrez, A., Hangst, J.S., Hardy, W.N., Hayano, R.S., Hayden, M.E., Humphries, A.J., Hydomako, R., Jonsell, S., Kemp, S.L., Kurchaninov, L., Madsen, N., Menary, S., Nolan, P., Olchanski, K., Olin, A., Pusa, P., Rasmussen, C.Ø., Robicheaux, F., Sarid, E., Silveira, D.M., So, C., Storey, J.W., Thompson, R.I., van der Werf, D.P., Wurtele, J.S., Yamazaki, Y.: Confinement of antihydrogen for 1,000 seconds. Nat. Phys. 7, 558–564 (2011)Google Scholar
  7. 7.
    Storry, C.H., Speck, A., Le Sage, D., Guise, N., Gabrielse, G., Grzonka, D., Oelert, W., Schepers, G., Sefzick, T., Pittner, H., Herrmann, M., Walz, J., Hänsch, T.W., Comeau, D., Hessels, E.A.: First laser-controlled antihydrogen production. Phys. Rev. Lett. 93(26), 1–4 (2004). ICrossRefGoogle Scholar
  8. 8.
    Gabrielse, G., Kalra, R., Kolthammer, W.S., McConnell, R., Richerme, P., Grzonka, D., Oelert, W., Sefzick, T., Zielinski, M., Fitzakerley, D.W., George, M.C., Hessels, E.A., Storry, C.H., Weel, M., Müllers, A., Walz, J.: Trapped antihydrogen in its ground state. Phys. Rev. Lett. 108(11), 12–15 (2012)CrossRefGoogle Scholar
  9. 9.
    Amole, C., Ashkezari, M.D. , Baquero-Ruiz, M., Bertsche, W., Butler, E., Capra, A., Cesar, C.L., Charlton, M., Deller, A., Eriksson, S., Fajans, J. , Friesen, T., Fujiwara, M.C., Gill, D.R., Gutierrez, A., Hangst, J.S., Hardy, W.N., Hayden, M.E., Isaac, C.A., Jonsell, S., Kurchaninov, L., Little, A., Madsen, N., McKenna, J.T.K., Menary, S. , Napoli, S.C., Olchanski, K. , Olin, A., Pusa, P., Rasmussen, C.Ø., Robicheaux, F. , Sarid, E., Shields, C.R., Silveira, D.M., So, C. , Stracka, S., Thompson, R.I., van der Werf, D.P., Wurtele, J.S., Zhmoginov, A.I., Friedland, L., ALPHA Collaboration: Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production. Phys. Plasmas 20(4), 43510 (2013)Google Scholar
  10. 10.
    Amole, C., Andresen, G.B., Ashkezari, M.D., Baquero-Ruiz, M., Bertsche, W., Bowe, P.D., Butler, E., Capra, A., Carpenter, P.T., Cesar, C.L., Chapman, S., Charlton, M., Deller, A., Eriksson, S., Escallier, J., Fajans, J., Friesen, T., Fujiwara, M.C., Gill, D.R., Gutierrez, A., Hangst, J.S., Hardy, W.N., Hayano, R.S., Hayden, M.E., Humphries, A.J., Hurt, J.L., Hydomako, R., Isaac, C.A., Jenkins, M.J., Jonsell, S., Jürgensen, L.V., Kerrigan, S.J., Kurchaninov, L., Madsen, N., Marone, A., McKenna, J.T.K., Menary, S., Nolan, P., Olchanski, K., Olin, A., Parker, B., Povilus, A., Pusa, P., Robicheaux, F., Sarid, E., Seddon, D., Seif El Nasr, S., Silveira, D.M., So, C., Storey, J.W., Thompson, R.I., Thornhill, J., Wells, D., van der Werf, D.P., Wurtele, J.S., Yamazaki, Y.: The ALPHA antihydrogen trapping apparatus. Nuclear Instruments and Methods in Physics Research, Section A: accelerators, Spectrometers, Detectors and Associated Equipment 735, 319–340 (2014)Google Scholar
  11. 11.
    Amole, C., Ashkezari, M.D., Baquero-Ruiz, M., Bertsche, W., Butler, E., Capra, A., Cesar, C. L., Charlton, M., Eriksson, S., Fajans, J., Friesen, T., Fujiwara, M. C., Gill, D. R., Gutierrez, A., Hangst, J. S., Hardy, W. N., Hayden, M. E., Isaac, C. A., Jonsell, S., Kurchaninov, L., Little, A., Madsen, N., McKenna, J. T. K., Menary, S., Napoli, S. C., Nolan, P., Olchanski, K., Olin, A., Povilus, A., Pusa, P., Rasmussen, C.Ø., Robicheaux, F., Sarid, E., Silveira, D.M., So, C., Tharp, T.D., Thompson, R.I., van der Werf, D.P., Vendeiro, Z., Wurtele, J.S., Zhmoginov, A.I., Charman, A.E.: An experimental limit on the charge of antihydrogen. Nat. Commun. 5, 3955 (2014)Google Scholar
  12. 12.
    Mohri, A., Yamazaki, Y.: A possible new scheme to synthesize antihydrogen and to prepare a polarised antihydrogen beam. Europhys. Lett. (EPL) 63, 207–213 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Enomoto, Y., Kuroda, N., Michishio, K., Kim, C.H., Higaki, H., Nagata, Y., Kanai, Y., Torii, H.A., Corradini, M., Leali, M., Lodi-Rizzini, E., Mascagna, V., Venturelli, L., Zurlo, N., Fujii, K., Ohtsuka, M., Tanaka, K., Imao, H., Nagashima, Y., Matsuda, Y., Juhász, B., Mohri, A., Yamazaki, Y.: Synthesis of cold antihydrogen in a cusp trap. Phys. Rev. Lett. 105(24), 1–4 (2010)CrossRefGoogle Scholar
  14. 14.
    Kuroda, N., Ulmer, S., Murtagh, D.J., Van Gorp, S., Nagata, Y., Diermaier, M., Federmann, S., Leali, M., Malbrunot, C., Mascagna, V., Massiczek, O., Michishio, K., Mizutani, T., Mohri, a., Nagahama, H., Ohtsuka, M., Radics, B., Sakurai, S., Sauerzopf, C., Suzuki, K., Tajima, M., Torii, H.A., Venturelli, L., Wu̇nschek, B., Zmeskal, J., Zurlo, N., Higaki, H., Kanai, Y., Lodi-Rizzini, E., Nagashima, Y., Matsuda, Y., Widmann, E., Yamazaki, Y.: A source of antihydrogen for in-flight hyperfine spectroscopy. Nat. Commun. 5, 3089 (2014)Google Scholar
  15. 15.
    Walz, J., Ross, S., Zimmermann, C., Ricci, L., Prevedelli, M., Hänsch, T.W.: Combined trap with the potential for antihydrogen production. Phys. Rev. Lett. 75(18), 3257–3260 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Hoffrogge, J., Fröhlich, R., Kasevich, M.A., Hommelhoff, P.: Microwave guiding of electrons on a chip. Phys. Rev. Lett. 106(19), 1–4 (2011)CrossRefGoogle Scholar
  17. 17.
    Werth, G., Gheorghe, V.N., Major, F.G.: Charged Particle Traps II, Vol. 54 of Springer Series on Atomic, Optical, and Plasma Physics. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)Google Scholar
  18. 18.
    Goldman, N., Dalibard, J.: Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields. Phys. Rev. X 4, 31027 (2014)Google Scholar
  19. 19.
    ASACUSA Collaboration: ASACUSA Status Report, CERN-SPSC-2007-003, Vol. SPSC-SR-01, no SPSC-SR-0151 (2007)Google Scholar
  20. 20.
    ASACUSA Collaboration: ASACUSA Status Report CERN-SPSC-2008-002, Vol SPSC-SR-02 (2008)Google Scholar
  21. 21.
    ASACUSA Collaboration: ASACUSA Status Report CERN-SPSC-2009-005, Vol SPSC-SR-04 (2009)Google Scholar
  22. 22.
    ASACUSA Collaboration: ASACUSA Status Report CERN - SPSC-2010-005, Vol SPSC-SR-05 (2010)Google Scholar
  23. 23.
    ASACUSA Collaboration: ASACUSA Status Report, CERN-SPSC-2011-003, Vol SPSC-SR-07 (2011)Google Scholar
  24. 24.
    ASACUSA Collaboration: ASACUSA Status Report, CERN–SPSC–2014-004, Vol CERN-SPSC- (2014)Google Scholar
  25. 25.
    Reichel, J., Vuletić, V.: Atom Chips. Wiley-VCH Verlag GmbH {&} Co. KGaA, feb, Weinheim, Germany (2011)CrossRefGoogle Scholar
  26. 26.
    Keil, M., Amit, O., Zhou, S., Groswasser, D., Japha, Y., Folman, R.: Fifteen Years of Cold Matter on the Atom Chip: Promise, Realizations, and Prospects. J. Mod. Optics (2016)Google Scholar
  27. 27.
    Trypogeorgos, D., Foot, C.: A two-frequency ion trap confining ions with widely different charge-to-mass ratios. arXiv:1310.6294 (2013)
  28. 28.
    Kaufmann, H., Ulm, S., Jacob, G., Poschinger, U., Landa, H., Retzker, A., Plenio, M.B., Schmidt-Kaler, F.: Precise Experimental Investigation of Eigenmodes in a Planar Ion Crystal. Phys. Rev. Lett. 109, 263003 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Landa, H., Drewsen, M., Reznik, B., Retzker, A.: Modes of oscillation in radiofrequency Paul traps. New J. Phys. 14(9), 93023 (2012)CrossRefMATHGoogle Scholar
  30. 30.
    Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations: An introduction for Scientists and Engineers, fourth edi ed. Oxford University Press (2007)Google Scholar
  31. 31.
    Landa, H., Drewsen, M., Reznik, B., Retzker, A.: Classical and quantum modes of coupled Mathieu equations. J. Phys. A Math. Theor. 45(45), 455305 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Maero, G., Herfurth, F., Kluge, H. J., Schwarz, S., Zwicknagel, G.: Numerical investigations on resistive cooling of trapped highly charged ions. Appl. Phys. B 107(4), 1087–1096 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Ulmer, S., Blaum, K., Kracke, H., Mooser, A., Quint, W., Rodegheri, C.C., Walz, J.: A cryogenic detection system at 28.9MHZ for the non-destructive observation of a single proton at low particle energy. Nuclear Instruments and Methods in Physics Research Section A: accelerators, Spectrometers, Detectors and Associated Equipment 705, 55–60 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Geyer, G., Blumel, R.: Transient antihydrogen production in a paul trap. Journal of Undergraduate Research in Physics 25, 1–6 (2012)Google Scholar
  35. 35.
    Gabrielse, G., Rolston, S.L., Haarsma, L., Kells, W.: Possible antihydrogen production using trapped plasmas. Hyperfine Interact. 44, 287–293 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    Yousif, F., Van der Donk, P., Kucherovsky, Z., Reis, J., Brannen, E., Mitchell, J., Morgan, T.: Experimental observation of laser-stimulated radiative recombination. Phys. Rev. Lett. 67(1), 26–29 (1991)Google Scholar
  37. 37.
    Wolf, A.: Laser-stimulated formation and stabilization of antihydrogen atoms. Hyperfine Interact. 76(1), 189–201 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    Amoretti, M., Amsler, C., Bonomi, G., Bowe, P. D., Canali, C., Carraro, C., Cesar, C. L., Charlton, M., Ejsing, A.M., Fontana, A., Fujiwara, M.C., Funakoshi, R., Genova, P., Hangst, J.S., Hayano, R.S., Jørgensen, L.V., Kellerbauer, A., Lagomarsino, V., Lodi-Rizzini, E., MacR ∖∖i, M., Madsen, N., Manuzio, G., Mitchard, D., Montagna, P., Posada, L.G.C., Pruys, H., Regenfus, C., Rotondi, A., Telle, H.H., Testera, G., van der Werf, D.P., Variola, A., Venturelli, L., Yamazaki, Y., Zurlo, N.: Search for laser–induced formation of antihydrogen atoms. Phys. Rev. Lett. 97(21), 1–4 (2006)Google Scholar
  39. 39.
    Kolbe, D., Beczkowiak, A., Diehl, T., Koglbauer, A., Sattler, M., Stappel, M., Steinborn, R., Walz, J.: A reliable cw Lyman-alpha laser source for future cooling of antihydrogen. Hyperfine Interact. 212, 213–220 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Michan, J.M., Fujiwara, M.C., Momose, T.: Development of a Lyman-alpha laser system for spectroscopy and laser cooling of antihydrogen. Hyperfine Interact. 228, 77–80 (2014)CrossRefGoogle Scholar
  41. 41.
    Alheit, R., Gudjons, T., Kleineidam, S., Werth, G.: Some Observations on Higher-order Non-linear Resonances in a Paul Trap. Rapid Commun. Mass Spectrom. 10(5), 583–590 (1996)CrossRefGoogle Scholar
  42. 42.
    ASACUSA Collaboration: Atomic Spectroscopy And Collision Using Slow Antiprotons CERN–SPSC 2005-002, Vol SPSC p-307 (2005)Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Nathan Leefer
    • 1
    • 2
  • Kai Krimmel
    • 1
    • 3
  • William Bertsche
    • 4
    • 5
  • Dmitry Budker
    • 1
    • 2
    • 3
    • 6
  • Joel Fajans
    • 2
  • Ron Folman
    • 7
  • Hartmut Häffner
    • 2
  • Ferdinand Schmidt-Kaler
    • 1
    • 3
  1. 1.Helmholtz-Institut MainzMainzGermany
  2. 2.Department of PhysicsUniversity of California at BerkeleyBerkeleyUSA
  3. 3.QUANTUM, Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.University of ManchesterManchesterUK
  5. 5.Daresbury LaboratoryThe Cockcroft InstituteWarringtonUK
  6. 6.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.Department of PhysicsBen-Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations