Skip to main content
Log in

Impact of silica environment on hyperfine interactions in 𝜖-Fe2O3 nanoparticles

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles have found broad applications in medicine, especially for cell targeting and transport, and as contrast agents in MRI. Our samples of 𝜖-Fe2O3 nanoparticles were prepared by annealing in silica matrix, which was leached off and the bare particles were then coated with amorphous silica layers of various thicknesses. The distribution of particle sizes was determined from the TEM pictures giving the average size ∌20 nm and the thickness of silica coating ∌5; 8; 12; 19 nm. The particles were further characterized by the XRPD and DC magnetic measurements. The nanoparticles consisted mainly of 𝜖-Fe2O3 with admixtures of ∌1 % of the α phase and less than 1 % of the Îł phase. The hysteresis loops displayed coercivities of ∌2 T at room temperature. The parameters of hyperfine interactions were derived from transmission Mössbauer spectra. Observed differences of hyperfine fields for nanoparticles in the matrix and the bare ones are ascribed to strains produced during cooling of the composite. This interpretation is supported by slight changes of their lattice parameters and increase of the elementary cell volume deduced from XRD. The temperature dependence of the magnetization indicated a two-step magnetic transition of the 𝜖-Fe2O3 nanoparticles spread between ∌85 K and ∌150 K, which is slightly modified by remanent tensile stresses in the case of nanoparticles in the matrix. The subsequent coating of the bare particles by silica produced no further change in hyperfine parameters, which indicates that this procedure does not modify magnetic properties of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications (vol 108, pg 2064, 2008). Chem. Rev. 110(4), 2574 (2010). doi:10.1021/Cr900197g

    Article  Google Scholar 

  2. Liu, G., Gao, J., Ai, H., Chen, X.: Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9(9–10), 1533–1545 (2013). doi:10.1002/smll.201201531

    Article  Google Scholar 

  3. Sun, C., Lee, J.S.H., Zhang, M.: Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60(11), 1252–1265 (2008). doi:10.1016/j.addr.2008.03.018

    Article  Google Scholar 

  4. Tartaj, P., Morales, M.a.d.P., Veintemillas-Verdaguer, S., Gonz lez Carre o, T., Serna, C.J.: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 36(13), R182–R197 (2003). doi:10.1088/0022-3727/36/13/202

    Article  ADS  Google Scholar 

  5. Tseng, Y.C., Souza-Neto, N.M., Haskel, D., Gich, M., Frontera, C., Roig, A., Van Veenendaal, M., NoguĂ©s, J.: Nonzero orbital moment in high coercivity 𝜖-Fe 2O3 and low-temperature collapse of the magnetocrystalline anisotropy. Phys. Rev. B - Condens. Matter Mater. Phys. 79 (9), 1–6 (2009). doi:10.1103/PhysRevB.79.094404

    Article  Google Scholar 

  6. Gich, M., Fina, I., Morelli, A., Sánchez, F., Alexe, M., Gázquez, J., Fontcuberta, J., Roig, A.: Multiferroic Iron oxide thin films at room temperature. Adv. Mater. (Deerfield Beach Fla.) 3(111), 4645–4652 (2014). doi:10.1002/adma.201400990. http://www.ncbi.nlm.nih.gov/pubmed/24831036

    Article  Google Scholar 

  7. Tronc, E., ChanĂ©ac, C., Jolivet, J.: Structural and magnetic characterization of 𝜖-Fe 2O3. J. Solid State Chem. 139(1), 93–104 (1998). doi:10.1088/0953-8984/23/12/126003. http://www.sciencedirect.com/science/article/pii/S0022459698978173

    Article  ADS  Google Scholar 

  8. Sakurai, S., Jin, J., Hashimoto, K., Ohkoshi, S.I.: Reorientation phenomenon in a magnetic phase of 𝜖-Fe 2O3 Nanocrystal. J. Phys. Soc. Japan 74 (7), 1946–1949 (2005). doi:10.1143/JPSJ.74.1946

    Article  ADS  Google Scholar 

  9. Taboada, E., Gich, M., Roig, A.: Nanospheres of silica with an 𝜖-Fe 2O3 single crystal nucleus. ACS Nano 3 (11), 3377–3382 (2009). doi:10.1021/nn901022s

    Article  Google Scholar 

  10. Kohout, J., BrĂĄzda, P., ZĂĄvěta, K., KubĂĄniovĂĄ, D., Kmječ, T., KubíčkovĂĄ, L., KlementovĂĄ, M., Ć antavĂĄ, E., Lančok, A.: The magnetic transition in 𝜖-Fe 2O3 nanoparticles: Magnetic properties and hyperfine interactions from Mössbauer spectroscopy. J. Appl. Phys. 117(17), 17D505 (2015). doi:10.1063/1.4907610. http://scitation.aip.org/content/aip/journal/jap/117/17/10.1063/1.4907610

    Article  Google Scholar 

  11. Tuček, J., Zboƙil, R., Namai, A., Ohkoshi, S.I.: 𝜖-Fe 2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem. Mater. 22(24), 6483–6505 (2010). doi:10.1021/cm101967h

    Article  Google Scholar 

  12. BrĂĄzda, P., Kohout, J., Bezdička, P., Kmječ, T.: α-Fe 2O3 versus ÎČ-Fe 2O3: Controlling the phase of the transformation product of 𝜖-Fe 2O3 in the Fe 2O3/SiO 2 system. Cryst. Growth Des. 14(3), 1039–1046 (2014). doi:10.1021/cg4015114

    Article  Google Scholar 

  13. Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 26(1), 62–69 (1968). doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  14. Roisnel, T., Rodri̇quez-Carvajal, J.: WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 378–381, 118–123 (2001)

    Article  Google Scholar 

  15. Gich, M., Frontera, C., Roig, A., Taboada, E., Molins, E., Rechenberg, H.R., Ardisson, J.D., Macedo, W.A.A., Ritter, C., Hardy, V., Sort, J., Skumryev, V., Nogues, J.: High and low-temperature crystal and magnetic structures of 𝜖-Fe 2O3 and their correlation to its magnetic properties. Chem. Mater. 18, 3889–3897 (2006). doi:10.1021/cm0609931. cond-mat/0604677

    Article  Google Scholar 

  16. Machala, L., Tuček, J., Zboƙil, R.: Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 23(14), 3255–3272 (2011)

    Article  Google Scholar 

  17. ĆŸĂĄk, T., JirĂĄskovĂĄ, Y.: CONFIT: Mössbauer spectra fitting program. Surf. Interf. Anal. 38, 710–714 (2006). doi:10.1002/sia2285

    Article  Google Scholar 

  18. Kiss, L.B., Söderlund, J., Niklasson, G.A., Granqvist, C.G.: New approach to the origin of lognormal size distributions of nanoparticles. Nanotechnology 1, 25–28. doi:10.1088/0957-4484/10/1/006. http://stacks.iop.org/0957-4484/10/ i=1/a=006?key=crossref.1abef74d8eebae4f850c722f3127f402 http://iopscience.iop.org/0957-4484/10/1/006

  19. Bþdker, F., Mþrup, S., Linderoth, S.: Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72(2), 282–285 (1994). doi:10.1103/PhysRevLett.72.282

    Article  ADS  Google Scholar 

  20. Coey, J.M.D.: Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27(17), 1140–1142 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Kubíčková.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2016), Leuven, Belgium, 3-8 July 2016

Edited by Kristiaan Temst, Stefaan Cottenier, Lino M. C. Pereira and André Vantomme

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubíčková, L., Kohout, J., Brázda, P. et al. Impact of silica environment on hyperfine interactions in 𝜖-Fe2O3 nanoparticles. Hyperfine Interact 237, 159 (2016). https://doi.org/10.1007/s10751-016-1356-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-016-1356-8

Keywords

Navigation