Mössbauer studies of stoichiometry of Fe3O4: characterization of nanoparticles for biomedical applications


The iron oxide Fe3O4, the mineral magnetite sometimes called ferrosoferric oxide, is notoriousy non-stoichiometric even in bulk form so its formula may be written Fe3−δO4. In nanoparticle form, where it has applications in medicine and information technology, it is even more susceptible to oxidation. In this paper we report synthesis and studies of superparamagnetic Fe3O4 nanoparticles with controlled diameters of 5.3, 10.6 and 11.9 nm. In room temperature spectra, departures from stoichiometry δ of up to 0.02 were estimated from the relative amounts of Fe 3+/ Fe 2+ and from their isomer shifts. This cannot be used for very small particles of diameter 10.6 nm and less as they are superparamagnetic at room temperature and do not show hyperfine splitting owing to fast relaxation. Such particles have promise for use in enhancing MRI signals. The magnetic spectrum is restored by the application of a relatively small magnetic field (10 kG). As the temperature is lowered the relaxation slows down and 6-line magnetic hyperfine patterns appear below a blocking temperature TB. The values of TB obtained are lower than those of many other researchers reported in the literature, suggesting that our particles are less affected by magnetic interactions between them. At low temperatures all the spectra are similar and closely resemble that of bulk Fe3O4 confirming that departures from stoichiometry are small.

This is a preview of subscription content, log in to check access.


  1. 1.

    van der Woude, F., Sawatsky, G.A., Morrish, A.H.: Phys. Rev. 167, 533 (1968)

    ADS  Article  Google Scholar 

  2. 2.

    Sawatsky, G.A., van der Woude, F., Morrish, A.H.: Phys. Rev. 183, 383 (1969)

    ADS  Article  Google Scholar 

  3. 3.

    Coey, J.M.D., Morrish, A.H., Sawatsky, G.A.: J. de Phys. Colloque 32 C, 1–271 (1971)

    Google Scholar 

  4. 4.

    Daniels, J.M., Rosencwaig, A.: J. Phys. Chem. Solids 30, 1561 (1969)

    ADS  Article  Google Scholar 

  5. 5.

    Mørup, S., Topsøe, H.: App. Phys. 11, 63 (1976)

    ADS  Article  Google Scholar 

  6. 6.

    Mørup, S., Topsøe, H.: Proc. Int. Conf.Mössbauer Spectroscopy, Bucharest, Romania (eds. Barb, D. and Tarina, D.) p. 229 (1977)

  7. 7.

    Mørup, S., Topsøe, H., Clausen, B.S.: Physica Scripta 25, 713 (1982)

    ADS  Article  Google Scholar 

  8. 8.

    Mørup, S., Topsøe, H.: J. Mag. Mag. Mat. 953, 31–34 (1983)

    Google Scholar 

  9. 9.

    Dezsi, I., Fetzer, C. s., Gormbkötö, A., Szücs, I., Gubicza, J., Ungár, T.: J. App. Phys. 103, 104312 (2008)

    ADS  Article  Google Scholar 

  10. 10.

    Andrade, A.L., Souza, D.M., Pereira, M.C., Fabris, J.D., Domingues, R.Z.: J. Nanosci. Nanotech. 9, 2081 (2009)

    Article  Google Scholar 

  11. 11.

    Salazar, J.S., Perez, L., de April, O., Phoic, L.T., Ihiawakrim, D., Vasquez, M., Greneche, J.-M., Begin-Colin, S., Pourray, G.: Chem. Mater. 23, 1379 (2011)

    Article  Google Scholar 

  12. 12.

    da Costa, G.M., Blanco-Anjudar, C., Grave, E., Pankhurst, Q.A.: J. Phys. Chem. B 118, 11738 (2014)

    Article  Google Scholar 

  13. 13.

    Kamali, S., Ericsson, T., Wäppling, R.: Thin Solid Films 515, 721 (2006)

  14. 14.

    Berry, F.J., Skinner, S., Thomas, M.F.: J. Phys. Condens. Mat. 10, 5215 (1998)

    Article  Google Scholar 

  15. 15.

    Kucheryavy, P., He, J., John, V.T., Maharjan, P., Spinu, L., Goloverda, G., Kolesnichenko, V.: Langmuir 29, 710 (2013)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to C. E. Johnson.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13–18 September 2015

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, C.E., Johnson, J.A., Hah, H.Y. et al. Mössbauer studies of stoichiometry of Fe3O4: characterization of nanoparticles for biomedical applications. Hyperfine Interact 237, 27 (2016). https://doi.org/10.1007/s10751-016-1277-6

Download citation


  • Mössbauer
  • Fe3O4
  • Nanoparticles
  • Superparamagnetism