Advertisement

Hyperfine Interactions

, Volume 236, Issue 1–3, pp 73–77 | Cite as

Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

  • Takahiko MasudaEmail author
  • Hideaki Hara
  • Yuki Miyamoto
  • Susumu Kuma
  • Itsuo Nakano
  • Chiaki Ohae
  • Noboru Sasao
  • Minoru Tanaka
  • Satoshi Uetake
  • Akihiro Yoshimi
  • Koji Yoshimura
  • Motohiko Yoshimura
Article

Abstract

We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 1015 from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect.

Keywords

Neutrino Raman excitation Para-hydrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ATLAS Collaboration: Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). doi: 10.1016/j.physletb.2012.08.020 CrossRefADSGoogle Scholar
  2. 2.
    CMS Collaboration: Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). doi: 10.1016/j.physletb.2012.08.021 CrossRefADSGoogle Scholar
  3. 3.
    Davidson, S., Ibarra, A.: Leptogenesis and low-energy phases. J. Phys. G: Nucl. Part. Phys 29, 1881–1883 (2003). doi: 10.1088/0954-3899/29/8/366 CrossRefADSGoogle Scholar
  4. 4.
    Agostini, M., et al. (GERDA Collaboration): Results on neutrinoless double-β decay of 76Ge from Phase I of the GERDA experiment. Phys. Rev. Lett 111, 122503 (2013). doi: 10.1103/PhysRevLett.111.122503
  5. 5.
    Gando, A., et al. (KamLAND-Zen Collaboration): Limit on neutrinoless β β decay of 136Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76Ge. Phys. Rev. Lett. 110, 062502 (2013). doi: 10.1103/PhysRevLett.110.062502
  6. 6.
    The EXO-200 Collaboration: Search for Majorana neutrinos with the first two years of EXO-200 data. Nature 510, 229–234 (2014). doi: 10.1038/nature13432 CrossRefADSGoogle Scholar
  7. 7.
    Aseev, V.N., et al.: Upper limit on the electron antineutrino mass from the Troitsk experiment. Phys. Rev. D 112003, 84 (2011). doi: 10.1103/PhysRevD.84.112003 Google Scholar
  8. 8.
    Bonn, J., et al.: The KATRIN sensitivity to the neutrino mass and to right-handed currents in beta decay. Phys. Lett. B 703, 310–312 (2011). doi: 10.1016/j.physletb.2011.08.005 CrossRefADSGoogle Scholar
  9. 9.
    Thomas, S.A., Abdalla, F.B., Lahav, O.: Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey. Phys. Rev. Lett 031301, 105 (2010). doi: 10.1103/PhysRevLett.105.031301 Google Scholar
  10. 10.
    Fukumi, A., et al.: Neutrino spectroscopy with atoms and molecules. Prog. Theor. Exp. Phys. 2012, 04D002 (2012). doi: 10.1093/ptep/pts066 CrossRefGoogle Scholar
  11. 11.
    Miyamoto, Y., et al.: Observation of coherent two-photon emission from the first vibrationally excited state of hydrogen molecules. Prog. Theor. Exp. Phys. 2014, 113C01 (2014). doi: 10.1093/ptep/ptu094 CrossRefGoogle Scholar
  12. 12.
    Kien, F.L., et al.: Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering. Phys. Rev. A 60, 1562–1571 (1999). doi: 10.1103/PhysRevA.60.1562 CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Takahiko Masuda
    • 1
    Email author
  • Hideaki Hara
    • 1
  • Yuki Miyamoto
    • 1
  • Susumu Kuma
    • 1
    • 5
  • Itsuo Nakano
    • 1
  • Chiaki Ohae
    • 2
    • 6
  • Noboru Sasao
    • 1
  • Minoru Tanaka
    • 4
  • Satoshi Uetake
    • 3
  • Akihiro Yoshimi
    • 1
  • Koji Yoshimura
    • 1
  • Motohiko Yoshimura
    • 3
  1. 1.Research Core for Extreme Quantum WorldOkayama UniversityOkayamaJapan
  2. 2.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  3. 3.Research Center of Quantum UniverseOkayama UniversityOkayamaJapan
  4. 4.Department of PhysicsOsaka UniversityOsakaJapan
  5. 5.Atomic, Molecular and Optical Physics Laboratory, RIKENSaitamaJapan
  6. 6.Department of Engineering ScienceUniversity of Electro-CommunicationsTokyoJapan

Personalised recommendations